

Hardware Hacking – Methodology & Tips 1 / 103

HARDWARE HACKING
METHODOLOGY & TIPS

Jérémy Brun

Version 1.0 – 02.2024

Hardware Hacking – Methodology & Tips 2 / 103

Table of content

Document History ... 4

1. Tools .. 5

1.1. Hardware Tools ... 5

1.2. Software Tools .. 10

2. Electronics 101 .. 12

2.1. Recognize Main Electronic Components .. 12

2.2. Connectors and Cables .. 15

2.3. Memory Types .. 16

2.3.1. Volatile Memory.. 16

2.3.2. Non-Volatile Memory.. 17

2.4. Chip Package Types ... 17

2.5. Communication Modes ... 19

3. Information Gathering .. 20

3.1. Reconnaissance ... 20

3.2. Chips Identification ... 21

3.3. Debug Interfaces Candidates .. 26

3.4. Annotated Overview of PCB .. 29

3.5. Attack Surface Mapping .. 31

3.6. Ways to Get Access to Firmware .. 32

4. UART .. 35

4.1. UART Protocol ... 35

4.2. UART Pinout Identification .. 36

4.3. Baud Rate identification .. 38

4.3.1. Baud Rate Identification using Logic Analyzer .. 38

4.3.2. Baud Rate Identification using Bruteforce .. 40

4.3.3. Baud Rate Identification using PicoScope ... 40

4.4. Interaction with UART ... 41

4.4.1. Using UART-to-USB serial adapter FT232 ... 42

4.4.2. Using Bus Pirate .. 43

4.5. U-Boot Bootloader Exploitation .. 44

4.5.1. Boot Logs Analysis ... 44

4.5.2. Access the Bootloader... 47

4.5.2.1. Standard Method .. 47

4.5.2.2. Flash Memory Glitching .. 50

4.5.3. U-Boot Abuse to Dump the Firmware .. 51

Hardware Hacking – Methodology & Tips 3 / 103

4.5.3.1. Via command md (Memory Display)... 51

4.5.3.2. Using SD Card (command mmc).. 52

4.5.3.3. Using USB (command usb) .. 53

4.5.3.4. Using TFTP (command tftp)... 54

4.5.4. U-Boot Abuse to Get a Shell .. 55

4.6. Post-Boot Exploitation .. 55

4.6.1. Unauthenticated Root Shell .. 55

4.6.2. Authentication Required ... 56

4.6.3. Restricted Shell (CLI) ... 57

5. JTAG... 59

5.1. JTAG Protocol .. 59

5.2. JTAG Pinout Identification... 61

5.2.1. Standard JTAG Pinout.. 61

5.2.2. Using JTAGulator ... 63

5.2.3. Alternative Method using JTAGenum ... 65

5.2.4. Advanced Research using Visual Inspection of Lines on PCB.. 65

5.3. Interaction with JTAG .. 67

5.4. Firmware Extraction using JTAG ... 71

6. SPI Memory ... 73

6.1. SPI Protocol ... 73

6.2. SPI Memory Identification .. 74

6.2.1. Using Datasheet .. 74

6.2.2. Using Logic Analyzer .. 75

6.3. Interaction with SPI ... 76

6.3.1. Connection to Bus Pirate... 76

6.3.2. Connection Methods ... 77

6.3.2.1. Using Chip Clips ... 77

6.3.2.2. Using Test Hook Clips .. 78

6.3.2.3. Soldering Wires in Place .. 78

6.3.2.4. Chip Removal .. 78

6.4. Firmware Extraction via SPI .. 80

7. Parallel EEPROM/Flash .. 82

7.1. Parallel EEPROM/Flash Identification ... 82

7.2. Dump using Commercial Memory Reader .. 83

7.3. Dealing with Error Correction Code (ECC) .. 85

8. Firmware Analysis and Reverse Engineering .. 88

8.1. Filesystem Extraction .. 88

8.1.1. Automatic Filesystem Extraction Using Binwalk ... 88

Hardware Hacking – Methodology & Tips 4 / 103

8.1.2. Manual Filesystem Extraction ... 90

8.1.3. When no Filesystem is Found ... 90

8.2. Filesystem Analysis.. 91

8.3. Firmware Emulation .. 91

8.3.1. Binary Emulation ... 92

8.3.2. Full System Emulation ... 92

8.4. Loading Bare-Metal Firmwares in IDA .. 92

8.5. Simple Binary Reverse Engineering Examples .. 98

8.5.1. Discovery of a Backdoor Command .. 98

8.5.2. Discovery of a Command Injection Vulnerability (Restricted Shell Bypass) 101

References .. 103

Document History

Version Date Description

1.0 12.02.2024 First version

Hardware Hacking – Methodology & Tips 5 / 103

1. Tools
1.1. Hardware Tools

– Various tools to open devices:

– Multimeter:

Hardware Hacking – Methodology & Tips 6 / 103

– PicoScope (USB PC Oscilloscope) (optional):

– Soldering iron:

Hardware Hacking – Methodology & Tips 7 / 103

– Hot air gun:

– Pin headers (that can be soldered):

– Jump wires (male/male, male/female, female/female) and test hook clips:

Hardware Hacking – Methodology & Tips 8 / 103

– Chip clips (for 8-pin and 16-pin SOIC/SOP Flash/EEPROM):

– Bus Pirate (v3.6 recommended) – http://dangerousprototypes.com/docs/Bus_Pirate:

– JTAGulator - https://www.parallax.com/product/jtagulator/:

– UART-to-USB serial adapter FT232RL:

http://dangerousprototypes.com/docs/Bus_Pirate
https://www.parallax.com/product/jtagulator/

Hardware Hacking – Methodology & Tips 9 / 103

– Board “Blue Pill” or “Black Pill” with Arduino-compatible STM32F103 microcontroller (optional, can be

used as a cheaper alternative to JTAGulator) - https://www.alibaba.com/product-detail/STM32-Black-

Pill-compatible-IC-APM32F103C_1600128162230.html

– Logic Analyzer compatible with Salae Logic software - https://www.az-
delivery.de/fr/products/saleae-logic-analyzer:

– Commercial memory programmer RT809H with multiple adapters/sockets for eMMC/NAND Flash -
https://fr.aliexpress.com/item/32957478812.html:

https://www.alibaba.com/product-detail/STM32-Black-Pill-compatible-IC-APM32F103C_1600128162230.html
https://www.alibaba.com/product-detail/STM32-Black-Pill-compatible-IC-APM32F103C_1600128162230.html
https://www.az-delivery.de/fr/products/saleae-logic-analyzer
https://www.az-delivery.de/fr/products/saleae-logic-analyzer
https://fr.aliexpress.com/item/32957478812.html

Hardware Hacking – Methodology & Tips 10 / 103

1.2. Software Tools

Name Description Link

PicoScope software Visualize outputs from PicoScope https://www.picotech.com/downloads

Salae Logic Analyzer Visualize outputs from Logic Analyzer https://www.saleae.com/downloads/

OpenOCD Interact with JTAG https://openocd.org/

Flashrom
Identify, read, write Flash memory
chips

https://www.flashrom.org/

Binwalk Analyze and dissect Firmware dump https://github.com/ReFirmLabs/binwalk

Screen / minicom /
putty

Terminal emulator

Baudrate.py
Baud rate for UART identification via
bruteforce

https://github.com/devttys0/baudrate

UART Bruteforcer
Python script to bruteforce
authentication via UART

https://github.com/firefart/UARTBruteF
orcer

Uboot-mdb-dump
Python script to dump Firmware
through U-Boot via UART

https://github.com/gmbnomis/uboot-
mdb-dump

JTAGenum

Tool to identify JTAG pinout using a
device with Arduino-compatible
microcontroller or Raspberry Pi, as an
alternative to JTAGulator

https://github.com/cyphunk/JTAGenum

NAND Dump Tools
Tool to create error-corrected data
dumps from raw NAND Flash memory
dumps

https://github.com/SySS-
Research/nand-dump-tools

Squashfs-tools
Tools to create and extract Squashfs
filesystems

https://github.com/plougher/squashfs-
tools

7zip for Windows
Alternative efficient tool for unpacking
SquashFS filesystem

Jefferson JFFS2 filesystem extraction tool
https://github.com/onekey-
sec/jefferson/

Unyaffs YAFFS2 filesystem extraction tool https://github.com/whataday/unyaffs

Ubi_reader UBIFS filesystem extraction tool
https://github.com/onekey-
sec/ubi_reader

Firmware-mod-kit
Collection of scripts for firmware
extraction and reconstruction

https://github.com/rampageX/firmware
-mod-kit/wiki

IDA Disassembler https://hex-rays.com/

Ghidra Disassembler https://ghidra-sre.org/

RT809H Programmer
software

Control RT809H Programmer (dump /
write memory chips)

http://doc.ifix.net.cn/@rt809/ENGLISH.
html

QEMU Firmware emulation https://www.qemu.org/

Firmadyne Firmware emulation based on QEMU
https://github.com/firmadyne/firmadyn
e

https://www.picotech.com/downloads
https://www.saleae.com/downloads/
https://openocd.org/
https://www.flashrom.org/
https://github.com/ReFirmLabs/binwalk
https://github.com/devttys0/baudrate
https://github.com/firefart/UARTBruteForcer
https://github.com/firefart/UARTBruteForcer
https://github.com/gmbnomis/uboot-mdb-dump
https://github.com/gmbnomis/uboot-mdb-dump
https://github.com/cyphunk/JTAGenum
https://github.com/SySS-Research/nand-dump-tools
https://github.com/SySS-Research/nand-dump-tools
https://github.com/plougher/squashfs-tools
https://github.com/plougher/squashfs-tools
https://github.com/onekey-sec/jefferson/
https://github.com/onekey-sec/jefferson/
https://github.com/whataday/unyaffs
https://github.com/onekey-sec/ubi_reader
https://github.com/onekey-sec/ubi_reader
https://github.com/rampageX/firmware-mod-kit/wiki
https://github.com/rampageX/firmware-mod-kit/wiki
https://hex-rays.com/
https://ghidra-sre.org/
http://doc.ifix.net.cn/@rt809/ENGLISH.html
http://doc.ifix.net.cn/@rt809/ENGLISH.html
https://www.qemu.org/
https://github.com/firmadyne/firmadyne
https://github.com/firmadyne/firmadyne

Hardware Hacking – Methodology & Tips 11 / 103

Firmware-analysis-
toolkit

Firmware emulation based on QEMU
https://github.com/attify/firmware-
analysis-toolkit

Binbloom
Bare-metal firmware analysis and
loading address identification

https://github.com/quarkslab/binbloom

https://github.com/attify/firmware-analysis-toolkit
https://github.com/attify/firmware-analysis-toolkit
https://github.com/quarkslab/binbloom

Hardware Hacking – Methodology & Tips 12 / 103

2. Electronics 101
2.1. Recognize Main Electronic Components
– All power-related components can be quickly identified, but are not really interesting as potential

targets for us:

o Resistors: They reduce voltage and current by dissipating power in the form of heat.

Characterized by its resistance (in Ohms). Two main different forms:

– Normal resistor, mounted through holes via two legs (on left).

– SMD resistor, smaller, mounted on the surface of PCB (on right). These are the most

frequent on modern embedded devices where space must be optimized.

o Capacitors: They hold energy in the form of an electric charge. Inside them, there are two

oppositely charged plates (hold electric charge when connected to a power source). They can

also act as a filter, reducing electrical noise affecting other chips on the device, separating AC

and DC components…

o Transistors: They act both as signal switches and/or amplifiers:

– Amplifier role = They produce bigger output current from small input (i.e., amplify) (e.g.,

microphone connected to loudspeakers).

– Switch role = They control the current by turning it on or off based on the applied

voltage at their control terminal.

Hardware Hacking – Methodology & Tips 13 / 103

o Inductors = They store energy in a magnetic field when the current flows through them. An

inductor typically consists of an insulated wire wound into a coil.

– Integrated Circuit (IC) microchips: Miniaturized electronic circuit that integrate multiple components

onto a single chip. The components and the complexity of the chip depends on its features.

o Microcontroller Unit (MCU): It is often the central component on a PCB, and it can be seen as

the “brain” of the electronic circuit, responsible for processing information, controlling various

functions, and interacting with other components on the PCB. MCU usually combines on a single

chip the following components:

– CPU (microprocessor),

– Volatile memory (RAM),

– Non-volatile memory (ROM),

– Input/output peripherals (e.g., GPIO, UART…),

– Timers,

– Communication interfaces.

o System-on-Chip (SoC): This IC is similar to MCU but even more complex since it embeds a

broader range of components, such as GPU, network controllers (e.g. Ethernel controller),

hardware-based security/cryptographic module, BlueTooth, real-time clock, etc. Therefore, SoC

are often found in more complex system than simple MCU. From a hacker’s perspective, MCU

Hardware Hacking – Methodology & Tips 14 / 103

or SoC must be clearly identified since it consistutes the center of the embedded device, and it

is communicating with all other main components on the board, that can be potential targets.

o Network Controllers: They are IC chip dedicated to manage network connectivity in the device.

A common example is an Ethernet controller that acts as a bridge between the device and the

network, allowing for the transmission and reception of data packets (example below).

o Trusted Platform Module (TPM): It provides hardware-based security features. It stores

cryptographic keys, performs secure cryptographic operations, and includes features to

enhance the security of a computing platform.

Tips:
Every Integrated Circuit (IC) chips on the PCB should be clearly identified (cf. 3.2. Chips Identification) in order
to have an overview of the hardware capabilities of the devices (e.g., the presence of a TPM on a board is
likely to indicate the use of cryptography for security features such as Secure Boot).

– Memory Chips: There is a wide variety of memory chips. Taking a high-level perspective, there exist two

primary categories:

o Volatile Memory (RAM): content is flushed when the power is turned off or disrupted,

o Non-Volatile Memory (ROM and Hybrid): it retains data across power cycles.

Hardware Hacking – Methodology & Tips 15 / 103

2.2. Connectors and Cables
– Pin headers: They are commonly used to give access to some features provided by the PCB. In particular,

they are used for debug interfaces (cf. 3.3. Debug Interfaces Candidates):

o SIL (Single In-Line) headers = single row of pins in a straight line.

o DIL (Dual In-Line) headers = two parallel rows of pins.

Sometimes, pin headers are also right-angled as follows:

– U.FL connectors: These are miniature coaxial radio-frequency connectors commonly used in electronic

devices with wireless communication features:

o Female component (port) on PCB:

Hardware Hacking – Methodology & Tips 16 / 103

o Male component (cable) connected to the PCB:

– Flexible PCB connectors: These kinds of connectors are very fragile by nature, be very cautious when

releasing them!

2.3. Memory Types
2.3.1. Volatile Memory

RAM (Random Access Memory) holds data for only as long as it received power supply:

– DRAM (Dynamic RAM): It stores each bit of data in an individual capacitor.

– SRAM (Static RAM): It offers faster access time and lower latency than DRAM, but it consumes more

power and it is more expensive.

RAM can be found in various configurations: embedded directly within a MCU/SoC, integrated as a dedicated

chip (cf. left picture below), or utilized as an external component attached to the PCB (cf. right picture below),

resembling the setup of RAM on a computer motherboard.

Hardware Hacking – Methodology & Tips 17 / 103

2.3.2. Non-Volatile Memory
There are several types of non-volatile memories:

– ROM (Read Only Memory):

o PROM (Programmable ROM): Data stored on PROM cannot be modified once written.

o EPROM (Erasable Programmable ROM): Data stored on EPROM can be erased and

reprogrammed multiple times (warning: do not confuse with EEPROM). It can be erased using

ultraviolet (UV) ray.

– Hybrid Memory (Read/Write):

o NVRAM (Non-Volatile Random Access Memory): Typically uses volatile memory technology

with a backup power source (e.g., battery) to maintain data integrity during power loss.

o EEPROM (Electrically Erasable Programmable ROM) = Read and write can be done on small

blocks of bytes. It is commonly used in systems where small amounts of data need to be updated

or modified infrequently. It has a limited number of write cycles.

o Flash Memory = Read and write can be done on larger blocks compared to EEPROM, so Flash is

usually not as flexible for small/targeted updates as EEPROM, but it is faster. It also has a limited

number of write cycles, it is usually less endurant (i.e., can endure fewer cycles) than EEPROM.

There are subtypes of Flash memories, depending on their technical implementation:

▪ NAND Flash = This is the most prevalent type, known for its high-density storage with

fast read/write access.

▪ NOR Flash = It has lower storage density than NAND Flash, but has faster read access

speed.

Note: Typical contents of non-volatile memory
– Flash memory is often used to store: firmware, bootloader, applications’ data.
– EEPROM is likely to be used to store: configuration settings, system information (e.g., serial numbers,

device identifiers, manufacturing information, etc.), user preferences, small logs, etc. It might also be
used to store firmware, but only if it is relatively small (on simple embedded devices).

Furthermore, non-volatile memory chips can also be distinguished by the communication protocol they use for

input/output (I/O):

– Serial protocol: most commonly SPI (cf. 6. SPI Memory) or I²C,

– Parallel protocol: for example, ONFI (cf. 7. Parallel EEPROM/Flash).

Note that EEPROM, NAND Flash and NOR Flash can use either serial protocol or parallel protocol; thus it is

needed to refer to their datasheet to identify their communication protocol.

2.4. Chip Package Types
Integrated circuits (ICs), or chips, come in various package types, and the choice of a package depends on

factors such as the application, required functionality, size constraints, and thermal considerations. Here are

the most common package types:

Hardware Hacking – Methodology & Tips 18 / 103

Note:

SOP and SOIC package types are very similar, as shown in the next
diagram. SOP has a larger footprint than SOIC, but what is important is
that they both have the same pin spacing. That is why, it is possible to
use the same chip clips for both packages (cf. 6.3.2.1. Connection to chip
using chip clip).

Below are some examples seen on real devices:

– Flash memory with 8-pin SOP package (very common

package for serial Flash):

Hardware Hacking – Methodology & Tips 19 / 103

– NAND Flash memory with TSOP-48 package (very common package for parallel NAND Flash):

2.5. Communication Modes
There are two modes of communications between IC components:

– Serial communications: data is sent/received one bit at a time over a single data line.

– Parallel communications: multiple bits are sent/received simultaneously over multiple data lines.

On embedded devices, serial communications between components are often preferred due to low physical

space (indeed parallel communications require much more data lines, and therefore more complex PCB).

Serial communications protocols examples:

– UART (Universal Asynchronous Receiver-Transmitter) (cf. 4.)

– RS-232

– USB

– SPI (Serial Peripheral Interface) (cf. 6.)

– I²C (Inter-Integrated Circuit)

– CAN

– Ethernet

– PCI Express

Parallel communications protocols examples:

– ONFI (Open NAND Flash Interface): Parallel communication that is often used for communication

between NAND Flash memory and microcontroller (cf. 7.)

– PCI (Peripheral Component Interconnect): PCI uses a parallel bus, but most recent implementations like

PCI Express (PCIe) have transitioned to a serial communication protocol.

Hardware Hacking – Methodology & Tips 20 / 103

3. Information Gathering
The first step of a hardware security assessment consists in gathering as much information as possible about the

target device.

Tips:
– Take note of all the information gathered.
– Download all documentation and datasheets available for the target device and the identified

components.
– Take lots of pictures of everything:

o Untouched device (every label, every screw, every port, every interface, etc.),
o Disassembled device,
o Both sides of PCB,
o Zoom on every chip, every label, every connector, etc.
o Remove PCB stickers and check what they hide.

3.1. Reconnaissance
This first phase consists in gathering all the publicly available information about the device:

– Look for the official website.

– Search for official documentation, based on the device’s reference number.

– Search for changelog / version history.

– Search for previous research/hacking already done on the target device (if available). For instance, this

is common with router devices thanks to OpenWrt project (https://openwrt.org).

https://openwrt.org/

Hardware Hacking – Methodology & Tips 21 / 103

– On devices with wireless communication capabilities, get the FCCID (Federal Communications

Commission Identification) which is a unique identifier assigned by FCC in the US to track and manage

electronic devices that emit radiofrequency (RF) signals. It is usually easily accessible from the back of

the device. Then, perform an FCCID lookup via https://fccid.io/. It can give lots of interesting technical

information about the device, including internal photos.

– Check if the device’s firmware can be downloaded from the official website or from anywhere else on

the Internet.

– Also, look for similar products, especially if only a few information is available for the target device.

– Do not forget to perform research about the target device on Twitter/X and Reddit where there is a

quite large community of hardware hackers.

3.2. Chips Identification
In this second step, the device must be open in order to access the PCB. The goal is now to identify most of the

IC chips on the PCB, and in particular the memory chips and MCU/SoC. To achieve this, read the reference

numbers written on the chips (if they have not been removed!), and search for their datasheets on:

– https://datasheetspdf.com/

– https://www.alldatasheet.com/

– https://www.datasheets360.com/

– Google: filetype:pdf <reference number>
– https://alibaba.com: most chips are sold here and the products’ descriptions might contain datasheet

or at least some useful technical information.

Tips:
– Play with orientation and light, combined with camera zooms, to be able to read reference numbers

/ codes written on chips. It is usually easier to read small reference numbers from high-quality
pictures, taken under different lights and angles. Image manipulation software can also be useful
(play with contrast and exposition for example).

https://fccid.io/
https://datasheetspdf.com/
https://www.alldatasheet.com/
https://www.datasheets360.com/
https://alibaba.com/

Hardware Hacking – Methodology & Tips 22 / 103

– Do not forget about the back of PCB, since both sides of PCB can have components.

Warning:
– Before disassembling the device, make pictures of the locations of screws, and keep track of which

screws come from where.
– Some screws can be hidden under some stickers, make sure to check and avoid forcing too much.
– When removing the PCB, be careful of cables and connectors (especially the ones that are hidden, on

the back of the PCB). Again, make pictures of every cable and connectors before releasing them.
The goal is to avoid breaking something when disassembling the device and extracting the PCB, and also to
be able to reassemble everything.

Manufacturer logos are also often printed on the chips. It can be useful to make sure we are looking at the right

chip when searching for datasheet. Here is a non-exhaustive list:

Hardware Hacking – Methodology & Tips 23 / 103

Tips:
If you cannot find datasheet for the exact reference number, try to search for “fragments” of the chip
number. For example, instead of searching for IT8786E-I, search for IT8786, and so on. Some digits can
just indicate unimportant variations of the same chip. Or it might also allow you to find datasheets for
components from the same family.

Example of chip identification:

1. We want to identify the following IC chip on a PCB. From a first view, we can already see that it is a chip

with a Quad Flat Package (QFP), i.e., a thin chip with many small pins on all four sides. This is a typical

form factor for microcontroller (MCU).

2. If we zoom in, we can read the reference written on the chip = iTE IT8786E-I

3. Research on datasheets websites does not report results for this exact reference number, but Google

search gives an interesting result:

4. This PDF file is the datasheet (i.e., the technical documentation) of the chip we are looking for. At the

beginning of the document, the page “Features” is interesting because it gives an overview of all the

features supported by this chip. At first glance, we can see that it supports several UARTs channels,

general-purpose Input/Output channels (GPIO), etc.

Hardware Hacking – Methodology & Tips 24 / 103

5. It confirms that this chip is a MCU. The chip can also be found on online electronics shops:

Hardware Hacking – Methodology & Tips 25 / 103

After identifying all the main components of a device, a table looking as follows for every identified component

should be produced in the final report:

Description Manufacturer Reference Technical Specifications

Microcontroller
(MCU)

iTE IT8786E-I
2028-BXS
S18HTA

- 64 GPIO pins

- 3.3V power supply

- Datasheet:
https://github.com/huchanghui123/ITE-
SuperIO/blob/master/IT8786E-I_B_V0.2.pdf

Tips:
If an electromagnetic/radio frequency shield (EM/RF shield) is present on the PCB, remember to remove it
to unveil what lies beneath. Indeed, interesting ICs often require such shielding. Here is an example on a
Netgear router where MCU and RAM are present under such a shield:

– Before shield removal:

– After shield removal:

In a datasheet, the most important sections from a hacker’s perspective are:

– Features/General description at the beginning: it gives an overview of the features supported by the

chip.

– Block diagram: it shows how the chip can interface with other components.

– Pinout diagram: graphical representation that illustrates the layout and assignment of pins.

https://github.com/huchanghui123/ITE-SuperIO/blob/master/IT8786E-I_B_V0.2.pdf
https://github.com/huchanghui123/ITE-SuperIO/blob/master/IT8786E-I_B_V0.2.pdf

Hardware Hacking – Methodology & Tips 26 / 103

– Memory mapping (for MCU/SoC): it shows how the memory ranges are assigned in MCU/SoC. It is

particularly useful when extracting firmware from mapped memory (cf. 5.4. Firmware Extraction using

JTAG) or when reversing bare-metal firmware (cf. 8.4. Loading Bare-Metal Firmware in IDA).

3.3. Debug Interfaces Candidates
After the identification of chips, it is important to identify the debug interfaces available on the PCB.

Debug interfaces are indeed often available on PCB as single or multiple rows of pads or pins. Therefore, they

should all be inspected.

Examples:

– PCB of a Netgear router:

o In red box: row of 4 pads that is a good candidate for UART (cf. 4. UART).

o In yellow box: double row of 14 pads that is a possible candidate for JTAG (cf. 5. JTAG).

– PCB of a PaloAlto network device:

o A row of 9 pins that could be either UART or JTAG.

o A double row of 10 pins that is another candidate (more likely JTAG).

Hardware Hacking – Methodology & Tips 27 / 103

Notes: Disabled debug interfaces
– Some debug interfaces can be present on a PCB but disabled. In such case, it often means that they

are used on development boards, but disabled in production. This is often the case for JTAG.
– Sometimes, however, there are some undocumented tricks to re-enable such disabled debug

interface, like connecting two points on the PCB. According to
https://www.makemehack.com/2020/03/how-to-find-the-jtag-interface.html, here are some tricks
that might work to re-enable JTAG (but they all require some strong electronic skills!):

o It might be missing the pull-up resistor in the TRST pin, in this way the JTAG interface is always
in a reset state and it will not function. This issue can be solved by putting a resistor of about
300 Ohm or 1 KOhm between this pin and Vcc.

o Usually between each JTAG connector pin and the related MCU/SoC pin, there is a low value
resistor that can be missing during mass production and it is included only in the prototype
boards. This issue can be solved by putting back this resistor or making a direct connection
short-circuiting the resistor pads.

Tips:
If there are the following labels next to the pins/pads, we are lucky since it gives a clear indication about the
type of debug interface we are facing (and possibly even about the pinout):

– UART, CONSOLE, RX, TX, DBG_TXD, DBG_RXD … → Indicates UART
– JTAG, TDO, TDO, TMS, TCK, TRST … → Indicates JTAG

To gain a comprehensive understanding of the various potential form factors for debug interfaces, below are

several additional examples.

– Examples of UART interfaces: Most common configuration is 4-pin or 3-pin.

https://www.makemehack.com/2020/03/how-to-find-the-jtag-interface.html

Hardware Hacking – Methodology & Tips 28 / 103

Note:
– UART can also be found on interfaces with many more pins/pads (but it is more exotic):

– In some rare cases, it is also possible to have a UART available directly from a port on the device. In
such a configuration, it is likely to be a well known and documented administration debug interface.
Here is an example on a network device with a port labelled AUX along with the Baud rate (115200)
and the UART packet configuration (standard 8N1). This one is designed to be used with a RJ45-to-
USB cable:

– Examples of JTAG interfaces: Most common configurations are one row of 5/6 pins or double row of

10, 12, 14 or 20 pins.

Hardware Hacking – Methodology & Tips 29 / 103

3.4. Annotated Overview of PCB
All the information collected during previous steps should be visually summarized on an annotated picture of

the PCB. This picture should include all the identified components and should be updated during the security

assessment to confirm the presence of any debug interfaces on the device, or if new components are identified

later on.

Examples:

– PCB of a Netgear router:

Hardware Hacking – Methodology & Tips 30 / 103

– PCB of a PaloAlto network device:

o Front side view:

Hardware Hacking – Methodology & Tips 31 / 103

o Back side view:

3.5. Attack Surface Mapping

Finally, before going straight into hacking, it is a good idea to create a comprehensive map of the device’s attack
surface. It is important to keep in mind that the attack surface extends beyond the realm of hardware
components. Indeed, IoT devices often have various interactions with end users and other devices through
different means. Understanding these interactions, which involve different communication methods, is key to
grasping the full scope of potential vulnerabilities.

Below is a non-exhaustive list of possible elements to put in such attack surface map (which must be adapted to
the target device, of course):

– Hardware:
o UART
o JTAG
o Non-volatile memory chips (EEPROM / Flash)
o USB ports
o Ethernet ports
o All ports
o External storage (e.g., SD cards, M2 SSD, etc.)

– Software:

o Firmware
o Web-based dashboard
o Mobile application to control the device
o Command-line interface (CLI) available through SSH or Telnet

– Network services:

o Any open port (TCP/UDP) on the device, on every available network interface.

– Network communications:
o HTTP(s)
o MQTT (Message Queuing Telemetry Transport)

Hardware Hacking – Methodology & Tips 32 / 103

o CoAP (Constrained Application Protocol)

– Wireless communications:
o Wi-Fi
o Cellular
o Bluetooth (BLE)
o ZigBee
o LoRa
o Wave
o 6LoWPAN

3.6. Ways to Get Access to Firmware

Getting access to the target device’s firmware is one of the goals of a hardware hacking assessment since it will
allow you to go from full black box to grey box testing. A firmware may contain filesystems, applications, binary
files, and sensitive data such as encryption/decryption keys, certificates, passwords, etc. (in the special case of
a bare-metal firmware, it is only a single binary and the sensitive data can be embedded inside).

Therefore, getting the firmware will make reverse engineering of the various components possible (cf. 8.
Firmware Analysis and Reverse Engineering).

There are several ways to get our hands on a device’s firmware, some of them being much easier than others:

– Download it from the official website: if you are lucky enough, the vendor’s website might directly
allow to download the latest version of the firmware.

– Download it from unofficial sources: sometimes other hackers have already extracted the firmware
from the same device, and they made it available online. Of course, it requires more vigilance to be sure
it is not a malicious/backdoored version.

– Sniff network traffic during firmware upgrade: it might be possible to perform a firmware upgrade from
the device, typically from a user interface provided for device administration (e.g., web dashboard). In
such a case, try to sniff the traffic using Wireshark and rebuild the file from network trace (.pcap). If
the traffic is encrypted (HTTPS), perform a Man-in-the-Middle attack (bettercap is a tool of choice)
and serve a fake certificate, lots of embedded devices will not complain.

– Soft extraction from the device: If a high-privileged shell access to the device is available (e.g., through
SSH, Telnet, etc.), it is possible to simply copy the mounted filesystems directly from the device. It is also
possible to dump the content of Flash memory chips as raw files by copying the files /dev/mtdX or
/dev/mtdblockX (e.g., dd if=/dev/mtd1 bs=512K | nc 192.168.0.1 9999). Whilst these will
need unpacking to extract the files from them, they will also contain other areas of the Flash that you
would have missed if you just copied the files off. This is, however, rather uncommon to have such
privileged access out-of-the-box, and usually only limited CLI is available, unless a special debug
service/interface is available somewhere.

Note: Encrypted Firmware
It is possible that the firmware file you get from downloading from the official website, or from sniffing
network during upgrade is encrypted. It is indeed a common practice by IoT vendors to encrypt it and to
decrypt it during the install/upgrade process. In such a case, it will be necessary to find a way to identify the
algorithm and the key (probably stored on one non-versatile memory chip on the device), or to dump the
firmware using another technique.

Hardware Hacking – Methodology & Tips 33 / 103

– Dump it from memory:
o Indirectly by reading mapped memory from UART: it might be possible to find ways to make a

full dump of the firmware from UART, for example when it gives access to Bootloader (cf. 4.5.
Typical Examples of UART Exploitations).

o Indirectly by reading mapped memory from JTAG: if available, JTAG might also give access to
the memory chips, including the one storing the firmware (cf. 5.4. Typical Examples of JTAG
Exploitations).

o Directly by reading memory from the memory chip itself: if the firmware is stored on an
external memory chip, it can be possible to dump its content using several techniques,
depending on the chip type (cf. 6. SPI Memory and 7. Parallel EEPROM/Flash). Note that not all
devices store their firmware on a separate memory chip, indeed some devices use the internal
Flash memory embedded into their MCU/SoC to store it (most frequent for bare-metal
firmwares). In this case, extraction of the firmware using this technique will not be possible.
Nevertheless, most of the Linux-based firmwares are stored on a separate EEPROM/Flash which
make them prone to extraction.

Note: Types of firmwares
There are three main types of firmwares you can encounter:

– Bare-Metal firmware:
o Runs directly on the hardware without an operating system.
o It has direct control over the hardware resources without any intermediary.
o Typically written in low-level languages (Assembly, C) and tailored for specific hardware.
o Small size.
o Often directly stored on the memory embedded inside the MCU/SoC.

– Linux-based firmware:
o Runs on top of Linux.
o Interacts with hardware components through the Linux kernel, using specific drivers.
o Features provided by the device can be written using high-level languages (e.g., web

dashboard, administration console over SSH, etc.).
o Due to resource constraints on embedded devices, OS size is optimized with only the

required components. BusyBox is often used to reduce the size, with a limited set of utilities
that are needed for the system.

– Real-Time OS (RTOS) based firmware:
o Use a Real-Time operating system (RTOS) for task scheduling and real-time requirements.
o Common for devices where precise timing and responsiveness are crucial (e.g., automobile,

aircraft, medical, industrial automation, …).
o Examples of RTOS: FreeRTOS, VxWorks, QNX, CMSIS-RTOS, ThreadX, …

Note: Duplicated firmwares
Some devices are storing two versions of the firmware. This is often a failsafe mechanism used in case of a
problem occurring with the first one, for example in case of a bad upgrade or a failed sector of the Flash chip.
It can also be used to restore the device in its initial state when doing a factory reset.
The second Firmware can be a “limited” version that is only aimed to allow the installation of a new fully
working Firmware.
Below is an illustration where two partitions, named IMG1 and IMG2, have been discovered after full memory
dump. Each partition is storing a copy of the same firmware, each containing the same root filesystem.

Hardware Hacking – Methodology & Tips 34 / 103

Hardware Hacking – Methodology & Tips 35 / 103

4. UART
4.1. UART Protocol

UART (Universal Asynchronous Receiver/Transmitter) is a serial communication (i.e., using one single bus for

emission and one for reception) allowing two different components on a device to talk to each other without

the requirement of a clock (i.e., asynchronous).

UART is also commonly used to give an access to the device’s internal via cable. It can give access to:

– Bootloader (typically U-Boot),

– Password-protected or unauthenticated (root) shell (giving access to the device’s Firmware),

– restricted command-line interface (CLI),

– Etc.

UART communication between two devices is done from Tx pin (stands for “Transmission”) to Rx pin (stands

for “Reception”).

Data is split into packets of 8-bit (=1 byte), with optional start bit, parity bit and stop bit as follows:

– Start bit: usually 0,

– Message (data): 8-bit length,

– Parity bit: Usually not used by devices (otherwise it is used for error/corruption checking),

– Stop bit: Usually 1.

Hardware Hacking – Methodology & Tips 36 / 103

The most common configuration for UART data packet is 8N1, i.e., 8-bit data / no parity bit / start
bit = 0 / stop bit = 1.

When UART line is in idle state (i.e., when no data is transmitted/received), the line is staying at logical value 1

(logical high).

4.2. UART Pinout Identification
UART pins are:

– Tx (Transmit) = Transmits data from the device to other end.

– Rx (Receive) = Receive data from the other end to the device.

– GND (Ground) = Ground reference pin.

– Vcc (Voltage) = Usually either 3.3 V or 5 V for electronic devices.

Note:
GND and Vcc pins are actually optional, and it is possible to find interfaces with only two pins Tx and Rx on
some boards. In such case, the GND from the adapter device we want to use to connect to UART (e.g., UART
to USB adapter FT232 or Bus Pirate) will need to be connected to another Ground point somewhere else on
the PCB (use multimeter in “continuity test” mode to find one easily).

In cases where UART pin labels are not explicitly marked on the PCB, the following methodology can be

employed to identify the UART pinouts:

1. On the multimeter, connect the black probe to the COM jack port, and the red probe to the VΩ jack

port.

2. Find the GND pin: Make sure the device is powered OFF. Use a multimeter in “continuity test” mode

with the black probe on a known Ground, that is to say an area that has a direct conductive path to earth

(e.g., a grounded metallic surface on the PCB, a screw, etc.) and the red probe on each pin/pad to test.

When the multimeter emits a “beep”, it means that there is a continuity between the tested pin and the

Ground, and therefore the tested pin corresponds to GND.

3. Find the Vcc pin: Put the multimeter in Voltmeter mode (DC) with the black probe on a known Ground

(or the previously found GND pin) and the red probe on one pin/pad. Power the device ON and keep the

probes on the pin/pad. If the measure indicates a constant voltage of either 3.3 V or 5 V (without any

Hardware Hacking – Methodology & Tips 37 / 103

fluctuation), it means that it corresponds to Vcc. Otherwise, power the device OFF, and repeat the

process for every other port until you identify Vcc.

4. Find the Tx pin: Reboot the device and repeat the previous process on every remaining pin/pad. If the

voltage fluctuates for a few seconds during boot, and then stabilizes at the Vcc value (either 3.3 V or

5 V), it is likely to correspond to Tx. This behaviour happens because, during boot-up, the device sends

serial data through that Tx port for debugging purposes (there are indeed usually a lot of boot logs data

sent when starting a device, as show in 4.5.1. Boot Logs Analysis). And once, it finishes booting, the

UART line goes idle; and in idle state, UART remains at logical 1 (logical high), which corresponds to the

Vcc value.

5. Find the Rx pin: On 4-pin configuration, the Rx pin is, of course, the last pin by process of elimination.

Otherwise, repeat the previous process but, this time, look for low voltage fluctuation.

Tips:
When 2 pins can be possibly either Tx or Rx, it is actually not a big deal if we do not manage to determine
which one is what at this step, because we can explore the two possibilities during the interaction with UART
(cf. 4.4) and check which configuration allows for readable data reception from UART.

Warning:
Switching cables for Tx and Rx is not a big deal, but confusing Vcc with GND, and connecting wires to them
incorrectly could lead to damaging and destroying the circuit !

Tips:
When performing such research for debug interface pinouts (not only for UART), it can be interesting to keep
notes of every measure in a table that can be reviewed later, and it can also be put into the final report. Here
is an example:

Hardware Hacking – Methodology & Tips 38 / 103

4.3. Baud Rate identification
Since UART is an asynchronous protocol, there is no requirement of a clock (no CLK), as a consequence the rate

at which data is transferred over the channel must be known. This rate is called Baud rate and refers to the

number of bits per second.

Common Baud rates for UART are:

– 9 600

– 38 400

– 19 200

– 57 600

– 115 200

4.3.1. Baud Rate Identification using Logic Analyzer
A logic analyzer is an electronic instrument used for capturing and analyzing digital signals in a digital system. It

is basically a device that can be plugged onto multiple pins on the PCB we want to analyze. Using the software

Salae Logic Analyzer, it is possible to visualize the signal on the monitored pins during a period of time.

This software is available at https://www.saleae.com/downloads/.

Here is the methodology to use a Logic Analyzer to determine the Baud rate of UART:

1. While the device is powered OFF, connect one of the channels of the Logic Analyzer (CH*) to the Tx pin.

If you are not sure to have identified Tx and Rx correctly at previous steps, you can connect one channel

to each candidate.

2. Connect the Logic Analyzer’s GND pin to one GND pin on the device’s PCB, so they both share a common

ground.

3. Connect the Logic Analyzer to a USB port on your computer.

4. Start the Salae Logic Analyzer software by simply running the executable “Logic” in the

application’s directory (sudo ./Logic). In the interface, you can see several channels on the left pane,

each of which corresponds to one of the Logic Analyzer’s channel pins.

https://www.saleae.com/downloads/

Hardware Hacking – Methodology & Tips 39 / 103

Warning:
Make sure that the device is powered OFF when connecting Logic Analyzer’s probes (or any other wires) to
avoid short-circuits that could damage (or even destroy) the device’s PCB and/or the Logic Analyzer.

5. Configure the Speed (Sample Rate) to be superior of equal to 50kS/s and the Duration to at least

20 seconds.

6. Click on “Start Simulation” to begin capturing the signals, and power ON the device at the same

time. Wait for the capture to finish.

7. When finished, you should see the signal for the Tx pin, as shown below:

8. The delta time corresponding to the transmission of 1-bit can be measured in the software. In the

example, this delta time for 1-bit is roughly equal to 8.33 μs. Therefore the Baud rate is about 1/(8,33
* 10^-6) ≈ 120048. We can conclude that here the actual Baud rate is 115200, since it is the closest

value from common Baud rates.

Tips:
It is possible to decrypt UART communication using Salae Logic Analyzer software when knowing the
Baud rate (it can also actually be done when it is not known using the feature “Use Autobaud” but it is prone
to error):

1. Click on the + beside “Analyzers” on the right pane. Select “Async Serial”. Choose the channel
on which you are reading the signal, and set the Bit Rate (Bits/s) to the identified Baud rate value

Hardware Hacking – Methodology & Tips 40 / 103

(115200 in the previous example). Other parameters can be left as default in most configurations
(correspond to the most common configuration for UART data packet which is 8N1, as seen in 4.1):

2. Visualize the decoded data next to the signal (in blue). Basically, each UART data packet is 8-bit, and

therefore corresponds to one ASCII character:

4.3.2. Baud Rate Identification using Bruteforce
This method is the easiest and fastest way to identify the Baud rate for UART:

1. Connect a UART-to-USB Serial adapter (or a multi-purpose device like Bus Pirate) to the UART interface

(cf. 4.4. Interaction with UART).

2. Boot the device and run the Python script https://github.com/devttys0/baudrate. It will simply loop

around all the most common Baud rates until it receives readable data, indicating that the currently

used Baud rate is correct. Here is an example:

4.3.3. Baud Rate Identification using PicoScope
Using PicoScope for this task is often overkill and previous techniques should be preferred, but this section gives

an example of usage of PicoScope that can be replicated for testing any other points on the board (especially

tricky locations on the PCB where we cannot directly plug some jump wires).

https://github.com/devttys0/baudrate

Hardware Hacking – Methodology & Tips 41 / 103

The software for PicoScope is available at https://www.picotech.com/downloads.

1. Connect the PicoScope’s black probe (GND) to one GND pin or any metallic surface on the PCB, so they

both share a common ground.

2. Touch the Tx pin we want to analyze with the PicoScope’s probe as shown below:

3. Start the capture in PicoScope software. An output similar to the one below should be produced:

4. The delta time corresponding to the transmission of 1-bit can be measured in the software. In the

example, this delta time for 1-bit is roughly equal to 8.06 μs. Therefore the Baud rate is about 1/(8,06
* 10^-6) ≈ 123 977. We can conclude again that the actual Baud rate is 115200, since it is the closest

value from common Baud rates.

4.4. Interaction with UART
When UART pinouts and Baud rate are known, it is possible to interact directly with UART. To do so, one of the

next devices can be used:

https://www.picotech.com/downloads

Hardware Hacking – Methodology & Tips 42 / 103

– Simple UART-to-USB serial adapter FT232 (easiest way)
– Multi-purpose device such as Bus Pirate

But before all, it is necessary to make sure that it is possible to connect jump wires onto the UART interface.

Indeed, it is pretty common to see PCB where pin headers have been removed on production. In such a case,

there are often only pads looking like small holes in the PCB. To circumvent this problem, it is needed to solder

our own pin headers to be able to connect jump wires.

Here is an example of UART with removed pin headers:

After soldering our own pin headers, jump wires with female connector can now be used:

Warning:
Make sure to not introduce false contact when soldering pin headers to the PCB. It is indeed essential to make
sure that each soldered pin is in contact with one single pad only.

4.4.1. Using UART-to-USB serial adapter FT232
Connecting UART-to-USB serial adapter FT232RL to UART is straightforward:

1. Connect adapter’s GND to UART’s GND.

2. Connect adapter’s Tx to UART’s Rx.

3. Connect adapter’s Rx to UART’s Tx.

4. Plug the adapter to your computer via USB.

Hardware Hacking – Methodology & Tips 43 / 103

5. Run the command sudo dmesg to see which device file descriptor it was assigned to. Typically, it will

be assigned to /dev/ttyUSB0 if you do not have any other peripheral devices attached.

6. Run a terminal emulator such as screen and pass it the file descriptor and the identified Baud rate:
screen /dev/ttyUSB0 115200

4.4.2. Using Bus Pirate
Connecting Bus Pirate to UART requires a bit more steps:

1. Connect Bus Pirate’s GND to UART’s GND.

2. Connect Bus Pirate’s MISO to UART’s Rx.

3. Connect Bus Pirate’s MOSI to UART’s Tx.

4. Plug the Bus Pirate to your computer via USB.

5. Connect to Bus Pirate with terminal emulator

with the Baud rate 115200:
screen /dev/ttyUSB0 115200

6. Enter the following on prompt “HiZ>”:

a. m – to change the mode

b. 3 – for UART mode

c. Depends on the target UART – for

Baud rate (e.g., 9 for 115200 bps)

d. 1 – for 8 bits of data, no parity control

e. 1 – for 1 stop bit

f. 1 – for Idle 1 receive polarity

g. 2 – for Normal output type

7. At the “UART>” prompt. Enter “(0)” to show

available macros:

8. Enter “(3)” to enter bridge mode with flow

control and hit “space” and the terminal will

receive input from your device.

Hardware Hacking – Methodology & Tips 44 / 103

4.5. U-Boot Bootloader Exploitation
4.5.1. Boot Logs Analysis

Any embedded device typically sends a lot of debug information to the UART interface at boot time. Therefore,

it is advised to capture all the data received via UART and to analyze it to look for interesting information,

especially technical information such as:

– Product names and version numbers,

– Bootloader,

– Operating system,

– Architecture,

– Memory types,

– Memory layout: where each physical non-volatile memory (Flash, EEPROM, etc.) is mapped in RAM?

– Filesystem (SquashFS, CramFS, JFFS, YAFFS, etc.) and partitions,

– Services running,

– Credentials in cleartext if you are lucky enough.

Examples:

– Boot logs from a Netgear router: In red, the most important information that can be extracted:

o Bootloader is U-Boot 1.1.4 (very popular bootloader for embedded devices).

o RAM 32 MB is present.

o Flash memory of 4 MB is present.

Hardware Hacking – Methodology & Tips 45 / 103

– Boot logs from a PaloAlto network device: In red, the most important information that can be

extracted:

o Use of TPM 2.0 for securing boot sequence integrity.

o Firmware in use is: CloudGenix version 5.6.3-b11

▪ It appears to be a Linux-based firmware.

o The bootloader in use is Grub.

o Some service daemons are started:

▪ SSH server (sshd)

▪ BGP server (bgpd)

▪ DHCP server

▪ SNMP server (snmpd)

o Standard ext2 Linux filesystem is used since the utility e2fsck is used for checking it.

▪ 2 partitions IMG1 and IMG2 are checked at boot time.

no such device: DVT.

Checking newer image (hd1,gpt7)/ 5.6.3-b11

rootfs: ok

initrd: ok

bzImage: ok

grub.2021080697: ok

feature: ok

licenses.tar.gz: ok

Booting hd1,gpt7 at 2022-09-07 11:57:13 Wednesday

no suitable video mode found.

Booting in blind mode

[INIT:DEBUG] early_setup

sku119l

Error running: fsck.fat -y /dev/sda1

fsck.fat 4.1 (2017-01-24)

0x25: Dirty bit is set. Fs was not properly unmounted and some data may be corrupt.

 Automatically removing dirty bit.

Performing changes.

/dev/sda1: 6 files, 1171/32183 clusters

Error running: e2fsck -y /dev/sda6

e2fsck 1.45.3 (14-Jul-2019)

IMG1 was not cleanly unmounted, check forced.

Pass 1: Checking inodes, blocks, and sizes

Pass 2: Checking directory structure

Pass 3: Checking directory connectivity

Pass 4: Checking reference counts

Pass 5: Checking group summary information

IMG1: 19/1152 files (15.8% non-contiguous), 45168/574208 blocks

Error running: e2fsck -y /dev/sda7

e2fsck 1.45.3 (14-Jul-2019)

IMG2 was not cleanly unmounted, check forced.

Pass 1: Checking inodes, blocks, and sizes

Pass 2: Checking directory structure

Pass 3: Checking directory connectivity

Pass 4: Checking reference counts

Pass 5: Checking group summary information

IMG2: 20/1152 files (20.0% non-contiguous), 67364/574208 blocks

[INITRD] 5.6.3-b11

Stopping system message bus: dbus.

Starting system message bus: dbus.

Starting TCG TSS2 Access Broker and Resource Management daemon: tpm2-abrmd.

[VERIFY] cgnx-angrybird

[VERIFY] cgnx-antelope

[VERIFY] cgnx-apix

[VERIFY] cgnx-beaver

[VERIFY] cgnx-bulldog

[VERIFY] cgnx-bwm

[VERIFY] cgnx-cheetah

[VERIFY] cgnx-cman

[VERIFY] cgnx-cpld

[VERIFY] cgnx-cpldfw

[VERIFY] cgnx-falcon

[VERIFY] cgnx-goblin

[VERIFY] cgnx-hellcat

[VERIFY] cgnx-impala

[VERIFY] cgnx-initramfs-install-com

[VERIFY] cgnx-initramfs-install-op

[VERIFY] cgnx-initscripts-interface-setting

[VERIFY] cgnx-initscripts-models

[VERIFY] cgnx-initscripts-vff

Hardware Hacking – Methodology & Tips 46 / 103

[VERIFY] cgnx-initscripts

[VERIFY] cgnx-ipfix

[VERIFY] cgnx-lancer

[VERIFY] cgnx-lion

[VERIFY] cgnx-nimrod

[VERIFY] cgnx-poros

[VERIFY] cgnx-proteus

[VERIFY] cgnx-spider

[VERIFY] cgnx-syslog-rtr

[VERIFY] cgnx-upp

[VERIFY] openssl

[VERIFY] qat-c2xxx

[VERIFY] qat

[VERIFY] libcrypto1.0.2

[VERIFY] libssl1.0.2

[INITRD] Switch root

INIT: version 2.88 booting

Loading fuse module.

Mounting fuse control filesystem.

Starting udev

Reboot-reason: power button pressed Wed Sep 7 11:54:50 2022

INIT: Entering runlevel: 5

Operating in Non-Fips mode

Configuring network interfaces... done.

Removing stale PID file /var/run/dbus/pid.

Starting system message bus: dbus.

Starting random number generator daemon

Initializing available sources

Failed to init entropy source hwrng

Enabling RDRAND rng support

Initializing entropy source rdrand

.

Starting OpenBSD Secure Shell server: sshd

done.

Starting Quagga daemons: zebra bgpd.

Starting DHCP server: .

Starting irqbalance: done

Starting syslogd/klogd: done

daemon not start due to lack of /dev/watchdog

No kdump kernel image found.

Starting TCG TSS2 Access Broker and Resource Management daemon: tpm2-abrmd.

TPM 2.0 device skipping starting

DRIVE sda 3

DRIVE sdb 3

Starting crond: OK

Starting network management services: snmpd.

Starting vmware tools daemon: OK

Starting quagga watchdog daemon: watchquagga.

Processing file: /etc/c2xxx_qa_dev0.conf

Parity err reporting is disabled.

QAT running.

Starting TPM2 Monitoring Script daemon: tpm2abrmdscript started.

CloudGenix 5.6.3-b11

The most common bootloader used on embedded device is U-Boot (https://github.com/u-boot/u-boot -

https://docs.u-boot.org/en/latest/). This section is therefore focusing on this bootloader, but some techniques

can be adapted to other bootloaders. U-Boot is lightweight but supports a lot of features that can be enabled

or disabled by the device’s manufacturer: memory read/write commands, load/execute binary files, re-flash

firmware, PXE boot, TFTP client/server, etc. They are available via the bootloader menu that might be accessible

through UART by different methods, detailed after.

https://github.com/u-boot/u-boot
https://docs.u-boot.org/en/latest/

Hardware Hacking – Methodology & Tips 47 / 103

4.5.2. Access the Bootloader
4.5.2.1. Standard Method

It is often possible to interrupt the booting process in order to access the bootloader menu. Most of the time, it

can be easily done by pressing a key quickly after powering on the device. Here is an example where any

keystroke sent through UART stops the autoboot process and fallback to U-Boot Bootloader prompt:

More complicated cases can be faced where only a specific combination of keystrokes - possibly an exotic one

– will permit to get access to the bootloader. To overcome such an issue, a Python script performing keystrokes

bruteforce has been developed (see below) and can be adapted to your needs. It gives an example of usage of

the PySerial library (https://pyserial.readthedocs.io/en/latest/pyserial_api.html) that is useful to interact with

UART programmatically. In particular, this script has given successful results during the audit of a router where

the sequence of keystrokes needed to interrupt the booting process was unknown.

#!/usr/bin/env python3
-*- coding: utf-8 -*-

import colored
import serial
from time import sleep, time
from argparse import ArgumentParser, FileType
from datetime import datetime
from traceback import format_exc

def colorize(string, color=None, highlight=None, attrs=None):
 return colored.stylize(string,
 (colored.fg(color) if color else '') + \
 (colored.bg(highlight) if highlight else '') + \
 (colored.attr(attrs) if attrs else ''))

def info(string):
 print(colorize('[*] ', color='light_blue', attrs='bold') + string)

https://pyserial.readthedocs.io/en/latest/pyserial_api.html

Hardware Hacking – Methodology & Tips 48 / 103

def warning(string):
 print(colorize('[!] ', color='dark_orange', attrs='bold') + \
 colorize(string, color='dark_orange'))

def error(string):
 print(colorize('[!] {}'.format(string), color='red', attrs='bold'))

def success(string):
 print(colorize('[+] {}'.format(string), color='green_3b', attrs='bold'))

def receive(ser):
 to_receive = ser.in_waiting
 sleep(.5)
 while to_receive < ser.in_waiting:
 to_receive = ser.in_waiting
 sleep(1)
 content = ser.read(to_receive).decode('utf-8', 'backslashreplace')
 return content

def receive_content(ser):
 content = receive(ser)
 info('Content received: len={}'.format(len(content)))
 print(content)

 if len(content)>0:
 while True:
 content = receive(ser)
 print(content)
 #sleep(0.2)
 if len(content) == 0:
 break

def main(device, speed, sleeptime, cmd, sendbreak):
 info('Connect to device {} ...'.format(device))
 try:
 with serial.Serial(device, speed, timeout=0) as ser:
 ser.reset_input_buffer()
 ser.reset_output_buffer()
 ser.write(b"\n\n")
 success('Connection success')
 content = receive(ser)
 info('Received content:')
 print(content)

 if cmd:
 info('Send command "{}" ...'.format(cmd))
 ser.write(cmd.encode())
 ser.write(b'\n')
 receive_content(ser)
 elif sendbreak:
 info('Send break...')
 while True:
 ser.send_break()
 ser.send_break()
 ser.send_break()
 ser.send_break()
 sleep(0.1)
 else:
 for i in range(0xff+1):
 for j in range(0xff+1):
 b = bytes([i,j])
 info('Sending keystroke: "{}" ...'.format(b))
 ser.write(b)
 ser.write(b'\n')
 receive_content(ser)

 sleep(sleeptime)

 receive_content(ser)

 except Exception as e:
 error('An error occured: {}'.format(e))

if __name__ == '__main__':
 overall_start_time = time()
 parser = ArgumentParser(description='')
 parser.add_argument('-d', dest='device', type=str, required=True, help="The serial device. eg
/dev/tty.usbmodem")

Hardware Hacking – Methodology & Tips 49 / 103

 parser.add_argument('-s', '--speed', type=int, dest='speed', default=115200, help='Baud rate')
 parser.add_argument('--sleep', type=float, dest='sleep', default=0.1, help='Sleep time (in seconds)
between each attempt (eg 0.2)')
 parser.add_argument('-c', '--cmd', type=str, dest='cmd', help='Command to send')
 parser.add_argument('--break', action='store_true', dest='sendbreak', help='Send break')
 args = parser.parse_args()

 main(args.device, args.speed, args.sleep, args.cmd, args.sendbreak)

info('Script finished: {} seconds'.format(round(time() - overall_start_time, 2)))

When bootloader menu has been accessed, it is possible to list all the available commands. The list will depend

on the configuration of U-Boot done by the manufacturer, and it is specific to the target device. It is accessible

via the help command (or “?”). Here is an example:

First of all, several commands can be used in order to gather additional technical information about the device.

For example, here, the commands bdinfo, board_ssid_show, coninfo, imls, version, printenv

give juicy information that gives more context and that can be reused later.

Hardware Hacking – Methodology & Tips 50 / 103

4.5.2.2. Flash Memory Glitching
In some unfortunate situations, gaining access to the bootloader might not be so straightforward. It is indeed

possible that there is no way to interrupt the booting process by pressing a key or a combination of keys. By

default, there is a countdown mechanism on U-Boot during which the boot process can be interrupted by

pressing a key. However it can be set to a duration of 0 in production. Alternatively, the bootloader may be

protected by an authentication with non-trivial or non-default credentials.

A “hardcore” trick that might allow to overcome such issue consists in shorting the Flash memory storing the

Firmware during the booting process, when U-Boot is loading the embedded OS. Basically, this technique

consists in creating a temporary connection using jump wires between one of the inputs/outputs (I/O) pins of

the Flash chip and the ground (i.e., one GND pin). As a requirement, I/O pins of the memory chip must be

identified using its datasheet (MISO/MOSI pins for SPI Flash for example). If the shorting works, the kernel is

likely to panic due to read error, and a default bootloader prompt can pop. Note that this technique will probably

require a lot of trials and errors.

Here is a successful example taken from https://blog.nviso.eu/2020/02/21/iot-hacking-field-notes-1-intro-to-

glitching-attacks/ where the U-Boot’s countdown mechanism is set to 0, but when short-circuiting the Flash

memory chip at boot, it fallbacks to the bootloader shell:

https://blog.nviso.eu/2020/02/21/iot-hacking-field-notes-1-intro-to-glitching-attacks/
https://blog.nviso.eu/2020/02/21/iot-hacking-field-notes-1-intro-to-glitching-attacks/

Hardware Hacking – Methodology & Tips 51 / 103

4.5.3. U-Boot Abuse to Dump the Firmware
4.5.3.1. Via command md (Memory Display)

If available, the command md followed by a memory address allows to read the memory located at that address,

as shown below:

According to the documentation (https://docs.u-boot.org/en/latest/usage/cmd/md.html), it is also possible to

specify the size of each value to display like when using xxd: we can use md.b <start_address> <length>

in order to display a given number of bytes from the specified address.

Therefore, it is possible to abuse this command in order to get a full dump of the firmware since the information

retrieved before gave us the address where the Flash memory was mapped in RAM (here 0x9F000000) and its

full size (here 0x400000 bytes for 4 MB). Moreover there is also no doubt that the firmware is stored on that

Flash (because this is the only non-volatile memory chip present on the target device). Here is the process:

1. Connect to UART using screen with logging enabled, via -L -Logfile <filename>

2. Boot the device and access the U-Boot menu.

3. Run the command: md.b <start_address> <length_in_bytes>.

In our example: md.b 9F000000 0x400000

https://docs.u-boot.org/en/latest/usage/cmd/md.html

Hardware Hacking – Methodology & Tips 52 / 103

4. Wait for all outputs. It can take a long time depending on the size of memory to dump.

5. Clean the log file to keep only the output from the md.b command.

6. Convert the full hexadecimal dump into raw binary file using the script uboot-mdb-dump

(https://github.com/gmbnomis/uboot-mdb-dump).

Tips:
When accessing the bootloader, the Firmware is not necessarily already loaded and mapped into RAM. In this
case, you will get a dump full of zeros or of random binary data. Therefore, we need to first manually load the
content of the Flash memory where the firmware is stored into RAM, before doing the manipulation explained
in this section. Here is the process to do so:

1. Initialize the Flash memory:
sf probe 0

2. Copy the content of Flash memory into RAM:
sf read <start_address_to_load_in_RAM> <start_offset_in_Flash>
<length_in_bytes>
In the previous example, it would be:
sf read 9F000000 0x0 0x400000

4.5.3.2. Using SD Card (command mmc)
If the device supports SD card and the U-Boot command mmc is available, it is possible to read/write directly

from/to an external SD card peripheral from the device.

https://github.com/gmbnomis/uboot-mdb-dump

Hardware Hacking – Methodology & Tips 53 / 103

Therefore, it is possible to abuse this command in order to dump the firmware onto an SD card plugged into the

device. Here is the process:

1. Insert the SD card into the device.

2. List the MMC devices to see if the SD card is properly detected with command: mmc list

3. Dump the Firmware onto the SD card, by using the command:
mmc write <start_address> <block_offset> <number_block_counts>
with:

– The start address where the Flash memory was mapped in RAM,

– The block offset on the SD card (will be 0 to start at the beginning),

– The number of block counts to write. A block size is usually 512 bytes. So, for example, if the

total Flash memory size is 4 MB = 4194304 bytes = 0x400000 bytes, we must use
4194304/512 = 8192 = 0x2000

The final command will look like this:
mmc write 9F000000 0 0x2000

4. When the transfer to SD card is finished, the SD card can be inserted into your computer, and the dump

can be extracted using the command dd by specifying the number of written blocks (8192 in the

previous example), as follows:
dd if=/dev/sda of=dump.bin count=8192

4.5.3.3. Using USB (command usb)
If the device supports external USB peripherals and the U-Boot command usb is available, it is possible to

read/write directly to an external USB storage from the device.

Hardware Hacking – Methodology & Tips 54 / 103

The principle is the same as with SD card described previously:

1. Plug the USB peripheral to the device.

2. Start USB controller, and list available USB devices to see if our USB peripheral has been properly

detected:
usb start
usb info

3. Dump the Firmware onto the USB peripheral, by using the command:
usb write <start_address> <block_offset> <number_block_counts>

with the same parameters as with mmc write described in the previous section.

4. Extract the dumped firmware using dd command.

4.5.3.4. Using TFTP (command tftp)
TFTP protocol (Trivial FTP) is a simple and lightweight file transfer protocol that is commonly used by embedded

devices. It is built over UDP and does not include a built-in authentication mechanism. Default port for TFTP

server is 69/udp. A TFTP client can be integrated into U-Boot, via a tftp command, in order to allow for copying

data into/from the embedded device.

Here is the process to dump the firmware and transferring it to an attacker’s computer via TFTP:

1. First of all, a TFTP server must be installed on the attacker’s machine. On Debian-like Linux distribution,

it is straightforward:
sudo apt install tftpd-hpa
Then, make sure that the service is running. The directory where TFTP server is mapped is, by default:

/srv/tftp/.

2. On U-Boot, TFTP client configuration is done by passing correct IP addresses to environment variables

as follows:
setenv ipaddr <IP_embedded_device>
setenv serverip <IP_server>
saveenv

3. Check that the environment variables have been correctly updated:
printenv

4. A limitation of TFTP server is that, by default, it is not possible to create files on the server from scratch

from a client. To overcome this limitation, the trick is just to create an empty file on the server with

write permission. This file is aimed at being filled when transferring the Firmware.
cd /srv/tftp
sudo touch firmware.bin
sudo chmod 666 firmware.bin

5. Finally, the transfer of firmware using TFTP can be done as follows:
tftp <start_address> firmware.bin <length_in_bytes>
For example, if the Firmware is loaded in RAM at the address 0x82000000 and has a size of 16 MB =

16777216 bytes = 0x1000000 bytes, the command will be:

Hardware Hacking – Methodology & Tips 55 / 103

4.5.4. U-Boot Abuse to Get a Shell
Sometimes, U-Boot can also be abused in order to get a (root) shell on the device. It is particularly useful when

an authentication is normally required after the booting process, or if it only gives access to a restricted

CLI/menu.

In U-Boot, when we display the environment variables, we can see that there is one variable named bootargs,

which contains the various parameters used in booting process. In particular, the argument named init

contains the full path of the script/binary that is launched when starting the operating system.

A well-known and trivial trick consists in replacing the value of init by /bin/sh as follows:

setenv bootargs ‘console=ttyS0,115200 root=31:02 rootfstype=jffs2 init=/bin/sh […]’

Note:
Copy all the data before and after the parameter init inside bootargs when updating its value. After
running the command setenv, check that the bootargs variable has been correctly updated via printenv.

After rebooting the device, if the init argument from bootargs is taken into account, a shell prompt should

be given. If it does not work, it might mean that the binary /bin/sh is not available on the system. In this case,

the goal is to find an alternative. For example, if BusyBox is used, we can try something like: init=/sbin/init
&& /bin/busybox sh. Several trials and errors might be required…

Tip: You can also try to use other values for the parameter console: ttyS1, ttyS2…

4.6. Post-Boot Exploitation
4.6.1. Unauthenticated Root Shell

When a device has finished booting (i.e., when the embedded OS has been loaded), it is not so uncommon that

it simply gives access to a non-password protected (root) shell via UART. In this lucky situation, it gives a direct

live access to the device’s firmware. It is therefore very convenient because it makes it possible to directly

analyze the device “from the inside”:

– Browse the filesystem,

– Check running process,

– Check network configuration and connectivity,

– Check running services,

– Execute and debug any binary,

– Access configuration files, logs, secrets, etc.

– Etc.

Note:
Most of the time, the shell on Linux-based embedded device is provided by Busybox that implements ash
(simple Unix shell) and a collection of the most essential command-line utilities into one single binary.

Hardware Hacking – Methodology & Tips 56 / 103

4.6.2. Authentication Required
Most of the time, you are not so lucky, and the access to a shell via UART requires a prior authentication (login

prompt).

Here is an example from a PaloAlto network device where it asks for credentials when the boot process is

finished:

In such a case, there are several possibilities to break in:

– Manually guess weak credentials.

– Check for known default credentials:

o In online databases that contain many credentials for various manufacturers/devices such as

https://cirt.net/passwords.

o In official or unofficial documentation available on the official website, online forums, etc. (cf.

3. Information Gathering).

– Conduct automated dictionary attack through UART using a Python script such as UARTBruteforcer

(https://github.com/firefart/UARTBruteForcer) or a custom one built using PySerial library. Note that

such attack cannot be very fast due to the design of UART, therefore wordlists should be well chosen.

https://cirt.net/passwords
https://github.com/firefart/UARTBruteForcer

Hardware Hacking – Methodology & Tips 57 / 103

– Check for trivial authentication bypass by trying to send common combinations of keystrokes such as

Ctrl+C. Here is an example where the standard login prompt is discarded when pressing such keys, and

a non-standard login prompt that could give access to more control is displayed instead:

– Check for trivial buffer overflow by sending very long credentials “AAAAA….”. On old embedded devices,

it can still be possible.

– Search for more complex vulnerabilities in the firmware that might allow for authentication bypass. Of

course, it requires to get hands on the firmware by an alternative means (cf. 3.6. Ways to Get Access to

Firmware).

4.6.3. Restricted Shell (CLI)
The shell provided through UART (after authentication or not) can be a restricted CLI (Command-Line Interface)

designed to give access to only a list of pre-defined commands, often with very limited access to the underlying

system (e.g., no direct possibility to browse the filesystem, to read any file, to execute any binary, etc.).

Here is an illustration of restricted CLI:

As a hacker, our goal is to find a way to escape from such a restricted shell and to get a real system shell. The

following guideline can be followed:

– Try to send common combinations of keystrokes such as Ctrl+C in an attempt to kill the CLI process.

Try it at different stages, that is to say when idle (waiting for command), but also when running a

command.

– Try to escape from the context of a command, by appending special characters such as “;”, “|”, “&&”,

etc. followed by the system command you want to run. Here is a trivial example:

Hardware Hacking – Methodology & Tips 58 / 103

– Try previous command injection in every parameter supported, for every command of the CLI. It is

indeed possible that the final system command that is actually run is built by concatenation of

parameters coming from the CLI, without proper sanitization. Here is an example from a real security

audit where the injection has been performed inside one:

When the firmware is available, it can be easier to reverse engineer it in order to find such vulnerabilities

(cf. 8.5.2. Discovery of a Command Injection Vulnerability).

– Search for backdoor commands that could give access to unrestricted shell or more privileged

features:

o At first, try traditional command names such as: debug, support, admin, shell, …

o Otherwise, more advanced search involving reversing engineering can be done. Once again, it

requires the Firmware to be available (cf. 8.5.1. Discovery of a Backdoor command).

When an escape from limited CLI has been found, it almost always leads to command execution as root,

because there is almost never any process separation in embedded devices. Therefore, everything is often

running as root!

Note:
Sometimes, even more restriction is applied, and only a simple menu is displayed like in the following example
taken from a UART access on a router:

Hardware Hacking – Methodology & Tips 59 / 103

5. JTAG
5.1. JTAG Protocol

JTAG (Joint Test Action Group) protocol is a simple and widely used testing and debugging interface for

embedded devices. It allows for direct communication with IC chips on a PCB for purposes such as testing,

debugging, and programming.

JTAG protocol is based on IEEE 1149.1 standard which defines what is called “Boundary Scan” architecture. The

main advantage offered by utilising boundary scan technology is the ability to set and read the values on pins

on the PCB without direct physical access. In other words, it provides direct interface to hardware on PCB, such

as Flash or RAM.

The JTAG’s boundary scan technology is implemented by the following components:

– TAP (Test Access Port) Controller: It is a finite state machine whose transitions are controlled by the

TMS signal (cf. JTAG pins below). It is the component that control the behaviour of the JTAG system, i.e.,

depending on the current state we are in, a specific operation is done by JTAG (for example reading a

register, updating a register, change the instruction to execute, etc.). The figure below is the TAP state

machine:

– Instruction Register (IR): This register holds the current instruction that is executed by the JTAG system.

Its content is used by the TAP controller to decide what to do with signals that are received. In general,

the value of IR will define which Data Register must be used to store data from signal received on input

pin (TDI) or to read data to send through output pin (TDO).

– Data Registers (DR): There are three primary data registers required by JTAG standard:

o BSR: Main testing data register. It is used to move data to and from the I/O pins of a device.

o BYPASS: Single-bit register. It is used to pass data from TDI to TDO.

o IDCODE: This register contains the ID code and revision number for the device.

Hardware Hacking – Methodology & Tips 60 / 103

JTAG standard provides a framework for manufacturers that can extend it for their needs, and provide device-

specific functionalities such as:

– Reading/Writing internal memory (inside MCU/SoC).

– On-chip debugging, i.e., allowing to single-step/break execution on microcontroller.

– Indirect access to other connected on-board components such as Flash/EEPROM memory chips. This

access is done via SoC’s external pins connected to these components.

The figure below shows this distinction between JTAG standard and device-specific functionality:

JTAG pins are:

– TDI (Test Data Input) = This is the pin that receives data, which is passed into the JTAG’s logic. The signal

presented at TDI is sampled on the rising edge of TCK.

– TDO (Test Data Output) = This is the pin that sends data out of the chip. Changes in the state of the

signal coming out TDO occur on the falling edge of TCK.

– TMS (Test Mode Select) = This pin is used to control the state machine implemented inside the TAP

controller. At every beat of the clock TCK, the signal received on TMS pin is checked and depending on

its value, the current state in the state machine is updated (cf. previous figure).

Hardware Hacking – Methodology & Tips 61 / 103

– TCK (Test Clock) = Clock used for synchronization. It defines how often the TAP controller will take a

single action (i.e., jump to the next state in the state machine). The clock’s speed is not specified by the

JTAG standard, and therefore the device connected to JTAG interface can determine it.

– TRST (Test Reset) = Used to reset the TAP controller, i.e., to put the state machine into its initial state.

It is optional since it is possible to reset the TAP controller by using only the TMS pin. Indeed, if the TMS

is held at the value 1 for five consecutive clock cycles, it will invoke a reset in the same way the TRST pin

would.

The supported instructions that can be put inside the Instruction Register (IR) are listed below:

– BYPASS = This instruction causes the TDI and TDO pins to be connected via the single-bit data register

also named BYPASS, which is used as an intermediary. In other words, every bit received on TDI is

written into BYPASS register, and then this register is read to send its value through TDO. This instruction

is used for testing other components in the JTAG chain without any unnecessary overhead.

– EXTEST = This instruction causes the TDI and TDO pins to be connected via the BSR data register. States

of the device’s pins can be read (their value is copied inside this BSR register), or it is possible to set

specific value to some device’s pins (by writing the value into this BSR register). The specific action to

perform using this BSR register actually depends on the current state of the JTAG system in the TAP

state machine.

– SAMPLE/PRELOAD = Again, this instruction causes the TDI and TDO pins to be connected via the BSR

data register. However, contrary to EXTEST, the device is left in its normal functional mode (i.e., read-

only mode, it is not possible to update manually the state of the device’s pins by writing into BSR). This

instruction is used to either capture or update the value of BSR. In particular, it can be used to update

BSR register before using the EXTEST instruction.

– IDCODE (optional) = This instruction returns the vendor/device ID code stored inside the IDCODE data

register.

– INTEST (optional) = This instruction is similar to EXTEST but used for the manipulation of on-chip

internal logic instead of external pins.

5.2. JTAG Pinout Identification
If you are lucky enough, the PCB has labels indicating clearly the JTAG pinouts. But most of the time, you will

have to manually identify the pinout, i.e., to identify the pins corresponding to TDI, TDO, TCK and TMS.

5.2.1. Standard JTAG Pinout
The first thing to do when facing a potential JTAG interface is to look for its resemblance to a standard

configuration. The website http://www.jtagtest.com/pinouts/ lists a lot of standard JTAG pinouts. If the

architecture of the device’s microcontroller is known (e.g., ARM, MIPS, etc.), it can also give additional clues

about the probability that a candidate is good or not.

When an interface found on a PCB has a configuration similar to one found on this website (i.e., the same

number of rows and of pins), the first thing to do is to check if the positions of GND pins match. It can be quickly

done using a multimeter in “continuity test” mode, as shown in 4.2. UART Pinouts Identification. If the positions

match, it might be a good indication that you are dealing with a JTAG interface, but further tests will be required

to make sure, and to check that it is actually enabled on the tested device (cf. next sections).

http://www.jtagtest.com/pinouts/

Hardware Hacking – Methodology & Tips 62 / 103

Below are some examples of standard JTAG pinouts:

Tip:
It is common to see Tag-Connect interface (https://www.tag-connect.com/info) for JTAG. This has a small
footprint on PCB but can be easily recognized because it looks like in this picture:

https://www.tag-connect.com/info

Hardware Hacking – Methodology & Tips 63 / 103

It is designed to be used with a specific connector looking like this:

5.2.2. Using JTAGulator
The fastest and easiest way to identify JTAG pinouts on a target device is to use the hardware tool JTAGulator.

This is a device created specifically for this purpose. It has a total of 24 channels that can all be connected to

pins on a PCB, but most of the time we will not need as many, of course. It performs some kind of bruteforce on

pins by issuing either the IDCODE or BYPASS command to every permutation of pins and waits for a response.

If it receives a response, it displays the detected pinout.

The scan using IDCODE is the fastest and is aimed at being run at first. However it can only detect TDO, TCK and

TMS if it detects a JTAG interface. If this scan is successful, another scan using the BYPASS command should be

run. It is much slower but permits to detect the remaining TDI pin.

Here is how to use the JTAGulator to identify JTAG pins:

1. Connect to JTAGulator’s GND pin to GND pin on the target device.

2. Connect channels CH0, CH1, CH2, … on JTAGulator to the pins you want to determine on the PCB.

3. Connect the JTAGulator to your computer via USB.

4. Connect to the JTAGulator using terminal emulator with the Baud rate 115200:
screen /dev/ttyUSB0 115200

5. Set the correct voltage by using the command V. It supports 1.2 V to 3.3 V. Most of the time, you

will have to set 3.3 V, which should correspond to the voltage of the device (Vcc).

Hardware Hacking – Methodology & Tips 64 / 103

6. Run the fast IDCODE scan by entering the command I:

7. In this example, a JTAG interface has been successfully detected on the tested pins, and the pins TDO,

TCK and TMS have been identified. The number displayed next to each pin label corresponds to the

channel number on JTAGulator.

8. In order to confirm this discovery and to identify the remaining TDI pin, a BYPASS scan should be run

thanks to the command B, as shown below:

9. Finally, all JTAG pins have been identified. A last test can be performed by issuing the command T. During

this test, if both TDI and TDO (input and output) match, it means that the discovered pinout was correct.

Hardware Hacking – Methodology & Tips 65 / 103

It is also possible to retrieve the vendor/device ID if it is supported by the target JTAG, by issuing the

command D:

A full video demonstration of JTAGulator recorded by its creator, Joe Grant, is available at:

https://www.youtube.com/watch?v=GgMOBhmEJXA.

5.2.3. Alternative Method using JTAGenum
When you do not have a JTAGulator, another (slower) possibility consists in using the tool JTAGenum

(https://github.com/cyphunk/JTAGenum) loaded on an Arduino-compatible microcontroller or a Raspberry Pi.

For example, the famous and cheap small boards named “Black Pill” and “Blue Pill” have a STM32F103

microcontroller and are compatible with this project.

The device you decide to use must be flashed with the JTAGenum code, using the scripts provided on the

project’s page. Then, connect to the device via USB using serial communication with Baud rate of 115200, similar

to the procedure followed with the JTAGulator. A scan can be issued to determine the JTAG pinout using the

command s, that will check every possible pin combination.

Note that, if for any reason, the JTAGenum project is not working, there are many other alternatives available

on Github.

5.2.4. Advanced Research using Visual Inspection of Lines on PCB
When JTAG interface has not been found using previous methods, it might be interesting to look closer to the

datasheet of the device’s microcontroller (MCU/SoC) and look for its pinout. Usually, microcontrollers have a

lot of different pins because they are “the brain” of the device and are aimed at communicating with many

different components, therefore their documentation can be very confusing. However, we want to look for a

reference to the JTAG protocol and see if there are dedicated pins for JTAG on the target device’s

microcontroller. To do so, we check for labels corresponding to JTAG pins in the microcontroller’s pinouts

diagram or anywhere else in the documentation.

Here is an example with the microcontroller AT91SAM7S256. In the red boxes, the pins corresponding to JTAG

lines have been highlighted (TDI, TDO, TCK, TMS):

https://www.youtube.com/watch?v=GgMOBhmEJXA
https://github.com/cyphunk/JTAGenum

Hardware Hacking – Methodology & Tips 66 / 103

Tip: Sometimes, there is no dedicated pins for JTAG but general-purpose I/O pins (GPIO) can be
programmed to be used for JTAG. Read the datasheet carefully!

After identifying the microcontroller’s pins related to JTAG, the game consists in trying to follow the lines on PCB

coming from those pins and see where they go. If they end to some testing points (TP), those points can be good

candidates for JTAG and might deserve further testing using the previously described method with JTAGulator

or JTAGenum. Note that it is possible to end to very tricky locations of JTAG interfaces that can only be found by

using such tricky technique. Below is an example of a very unusual location of JTAG on a Netgear router, and as

you can see, it is not constituted of a single or double row of pins/pads that could have been clearly identified:

Notes:
Following traces/lines can be easy on simple devices with single-layer PCBs (only one side of PCB is used) or
double-layer PCBs (both sides of PCB are used). However, it can be much harder with multi-layer PCBs where
some lines or fragments of lines cannot be seen by visual inspection.

Hardware Hacking – Methodology & Tips 67 / 103

Using multimeter in “continuity test” mode can help to follow traces on the PCB: place the two probes at two
locations on the PCB, it will beep if the two points are connected.

5.3. Interaction with JTAG
When JTAG pinout is known, it is possible to interact directly with JTAG. To do so, one of the next devices can

be used:

– Dedicated JTAG debugger device like Segger J-Link - https://www.segger.com/products/debug-
probes/j-link (expensive)

– Multi-purpose device such as Bus Pirate

Here is the process to follow to interact with JTAG using Bus Pirate:

1. First of all, it is required to install the tool OpenOCD that will be used to send commands to the JTAG

interface. It must be installed with Bus Pirate enabled, as follows:
git clone git://git.code.sf.net/p/openocd/code
cd code
./bootstrap
./configure --enable-maintainer-mode --disable-werror --enable-buspirate
make
sudo make install

2. Make sure that Bus Pirate’s firmware is compatible with OpenOCD; otherwise you will get the error:

“Error: Bus Pirate error. Is binary/OpenOCD support enabled”. To check the firmware version, connect

to Bus Pirate, and issue the command HiZ> i. Then, check in the following table if this version is

compatible with OpenOCD. If it is not the case, upgrade the firmware by following the procedure

explained on the following page:

http://dangerousprototypes.com/docs/Pirate-

Loader_console_upgrade_application_(Linux,_Mac,_Windows)

https://www.segger.com/products/debug-probes/j-link
https://www.segger.com/products/debug-probes/j-link
http://dangerousprototypes.com/docs/Pirate-Loader_console_upgrade_application_(Linux,_Mac,_Windows)
http://dangerousprototypes.com/docs/Pirate-Loader_console_upgrade_application_(Linux,_Mac,_Windows)

Hardware Hacking – Methodology & Tips 68 / 103

3. Connect the Bus Pirate to the JTAG interface using jump wires, as follows:

Bus Pirate JTAG Interface

GND GND

MOSI TDI

MISO TDO

CLK TCK

CS TMS

4. Create the adapter’s configuration file for Bus Pirate that we will name “buspirate.cfg”. Default

adapters configuration files are in the following directory on default install of OpenOCD, and can be used

as references: /usr/local/share/openocd/scripts/interface/

adapter driver buspirate

Not yet implemented properly...

#transport select jtag

Set the serial port to be used

buspirate_port /dev/ttyUSB0

Set "normal" or "fast" (~1 MHz)communication speed:

buspirate_speed normal

Turn OFF the voltage regulator:

Uncomment this line if Bus Pirate’s VPU is connected to VTref(3v3)

#buspirate_vreg 0

open drain as we are working with pull up's

buspirate_mode normal

turn pull up's on (VTref is connected to pull up's)

buspirate_pullup 0

this depends on the cable, you are safe with this option

reset_config srst_only

5. Check that the OpenOCD configuration is correct for our JTAG adapter, which is here Bus Pirate:
sudo openocd -f buspirate.cfg
If it is correct, an output similar to the next one will be displayed:

Hardware Hacking – Methodology & Tips 69 / 103

6. Since high-level implementation of JTAG is vendor/device specific (cf. 5.1. JTAG Protocol), it is necessary

to have an OpenOCD configuration file specific to the target microcontroller that supports JTAG. This

configuration file is supposed to tell OpenOCD what are the JTAG commands that are supported by the

target and how they are implemented. Therefore, it is required to have perfectly identified the device’s

MCU/SoC at this step. In this example, let us assume that we are targeting the Proxmark3 device, where

the MCU is AT91SAM7S512 (ARM) as shown in the following picture:

7. For most MCU/SoC, OpenOCD configuration files can be found either in

/usr/share/openocd/scripts/target/ or online. For example, the online directory

https://github.com/intel/OpenOCD/tree/master/tcl/target contains a large collection of configuration

files. If the configuration for your target device is not found here, you can also perform extensive

searches on the Internet since it is likely that a hardware hacker has already developed and released a

configuration file for the target MCU/SoC.

In our example, the configuration file “at91sam7x512.cfg” corresponds to the reference of the target

MCU:

Finally, it is possible to connect to the target device through JTAG, using Bus Pirate as hardware adapter

and OpenOCD as software. To do so, run the following command by supplying the two configuration files

referred previously:
openocd -f ./buspirate.cfg -f
/usr/share/openocd/scripts/target/at91sam7x512.cfg

https://github.com/intel/OpenOCD/tree/master/tcl/target

Hardware Hacking – Methodology & Tips 70 / 103

8. In order to interact with JTAG, it is necessary to connect to the running instance of OpenOCD via Telnet:
telnet localhost 4444

9. It is now possible to issue commands to the JTAG system via OpenOCD. Refer to the OpenOCD

documentation for a full list of available commands: https://openocd.org/doc/html/General-

Commands.html

Note: Target configuration file for device with external Flash memory
In the previous example, there is no external Flash on the PCB; indeed the firmware is stored on an internal
Flash inside the MCU (it is a bare-metal firmware). Therefore, only a configuration file specific to the MCU is
necessary in order to access this Flash memory through JTAG.
However, in many cases, there are one or more external Flash memory chips on a PCB that store the Firmware.
In such cases, it is necessary to provide a configuration file to OpenOCD that defines these external Flash chips.
In the documentation, those configurations are referred to as “board configuration files”. Some examples are
available in https://github.com/intel/OpenOCD/tree/master/tcl/board.
Basically, such a configuration is built like this:

– Include the target configuration file corresponding to the PCB’s MCU/SoC:
source [find target/mcu.cfg]

– Configure the external Flash memory chip:
set _FLASHNAME $_CHIPNAME.flash

https://openocd.org/doc/html/General-Commands.html
https://openocd.org/doc/html/General-Commands.html
https://github.com/intel/OpenOCD/tree/master/tcl/board

Hardware Hacking – Methodology & Tips 71 / 103

flash bank $_FLASHNAME <driver> <base_address> <size> <chip_width> <bus_width>
$_TARGETNAME

where:

o <driver> is the driver that must be used by OpenOCD to access the Flash. OpenOCD supports
NOR and NAND Flash chips. To know which driver to use, you have to refer to the MCU
datasheet and to the OpenOCD documentation that list all supported drivers:

▪ For NOR: http://openocd.org/doc/html/Flash-Commands.html#External-Flash
▪ For NAND: http://openocd.org/doc/html/Flash-Commands.html#NAND-Driver-List

o <base_address> is the address in RAM where the Flash is mapped.
o <size> is the size of the chip, in bytes.
o <chip_width> is the width of the flash chip, in bytes. Ignored for most MCU drivers.
o <bus_width> is the width of the data bus used to access the chip, in bytes. Ignored for most

MCU drivers.

In order to determine <base_address> and <size>, you will have to refer to the MCU datasheet and look
for the memory map.
Here is an example on the MCU AT91SAM9260:

So, if you refer to the memory map, you can see that the first Flash is mapped at 0x10000000, and the size
will depend on the Flash itself, with a maximum of 256 MB.

5.4. Firmware Extraction using JTAG
Once connected to the JTAG system, it is possible to perform memory operations. For example, to read the

memory at a specified location, you can simply use the mdw command as follows:

mdw <address> <count_dword>

http://openocd.org/doc/html/Flash-Commands.html#External-Flash
http://openocd.org/doc/html/Flash-Commands.html#NAND-Driver-List

Hardware Hacking – Methodology & Tips 72 / 103

For example, it might be useful to read sensitive information such as passwords from memory.

In order to dump the firmware stored on Flash memory (either internal or external) and mapped in RAM, you

will have to follow the process below:

1. First of all, it is needed to know the memory region in RAM where the firmware is mapped. In the

example from the previous section, the firmware is bare-metal and is stored in the internal Flash

embedded inside the MCU. The MCU’s datasheet has a section named “Memory Mapping” that

indicates the address where this internal Flash is mapped: the base address is 0x100000 and its size is

0x100000 bytes.

(For an example of memory mapping with external Flash, refer to the previous Note: Target

configuration file for device with external Flash memory).

2. It is now possible to issue the OpenOCD command dump_image with the right parameters:
dump_image <filename> <address> <size_in_bytes>
Note that the target must be first halted using the command halt.

3. The firmware is finally dumped into a raw file.

Hardware Hacking – Methodology & Tips 73 / 103

6. SPI Memory
6.1. SPI Protocol

SPI (Serial Peripheral Interface) is a synchronous serial communication protocol used for high-speed inter-

component communication on a PCB, between a master component and one or more peripheral devices

(referred to as slaves). In general, the master is the MCU/SoC and the slaves can be memory chips (e.g.,

EEPROM/Flash).

SPI supports full-duplex communication, allowing data to be transmitted and received simultaneously. This is

achieved using separate data lines for each direction (MISO and MOSI).

SPI pins are:

– MISO (Master In, Slave Out) = Slave sends data to the master on this line (Slave → Master).

– MOSI (Master Out, Slave In) = Master sends data to the slave on this line (Master → Slave).

– SCLK (Clock) = This pin receives the clock signal generated by the master to synchronize data transfer.

The presence of this clock is required since SPI is a synchronous protocol.

– CS/SS (Chip Select / Slave Select) = This pin is used to enable and select a specific slave device. It is

active on low, i.e., when the received signal is 0. Only one slave can be selected at the same time, as a

consequence, only one peripheral component can receive the signal 0 on CS/SS at a given time, while

all the other ones must receive the signal 1.

Note: Alternative pins labels
When reading datasheets of components that can be used as a slave in SPI protocol (e.g., Flash memory), it is
common to see alternative pins labels:

– SDI / DI / DIN / SI = Those labels all refer to Data In / Slave In. So they correspond to MOSI,
and are connected to the MOSI pin on the master.

– SDO / DO / DOUT / SO = Those labels all refer to Data Out / Slave Out. Similarly, they correspond
to MISO, and are connected to the MISO pin on the master.

Hardware Hacking – Methodology & Tips 74 / 103

Here is an example of SPI workflow:

1. First of all, the master configures the clock frequency according to the slave device’s clock frequency.

2. The master selects the slave device with which it will communicate. To do so, it sends the signal 0 to the

CS/SS line of the component to select. All the other slaves receive an idle signal (equal to 1) on their

CS/SS lines.

3. The master initiates the communication with the selected slave by sending data on the MOSI line.

4. The slave receives the data on its pin labelled MOSI, or alternatively SDI / DI / DIN / SI.

5. The slave sends data to the master on the MISO line, coming out of the pin labelled MISO or alternatively

SDO / DO / DOUT / SO.

6. The master receives the data.

6.2. SPI Memory Identification
6.2.1. Using Datasheet

A lot of EEPROM/Flash memory chips are using SPI protocol to communicate with the MCU/SoC. It can be

easily confirmed by reading the datasheet. Here is an example with the Flash memory MX25L3208E. In the

“General Description” section of the datasheet of this chip, it clearly indicates that it uses SPI protocol as

shown below.

After having the confirmation that the chip is using SPI, it is possible to refer to the datasheet again to discover

the pinout. Every pin has a number with a label. The SPI pins can be easily identified:

– CS# corresponds to CS/SS

– SO/SIO1 corresponds to MISO

– SI/SIO1 corresponds to MOSI

– SCLK has the standard label

Tip: Use the position of the circle on the chip to identify the chip orientation and the pin labelled 1 in the
diagram.

Hardware Hacking – Methodology & Tips 75 / 103

6.2.2. Using Logic Analyzer
It is also possible to identify SPI pinout using a Logic Analyzer. To do so, it is required to connect the Logic

Analyzer to the different pins of the chip. The most convenient way often consists in using chips clips for 8-pin

or 16-pin SOP packages; other methods are described in the next section.

The next picture shows an example where a Flash memory is connected to a Logic Analyzer. When the device is

powered on, the output in Salae Logic software shows that it is possible to distinguish the four lines of SPI

protocol rather easily:

– The SCLK line is the easiest to identify (here on CH02) with a typical square waveform signal.

– The CS/SS line (here on CH00) is active on low, i.e., when the signal has a value of 0. And when it is

active, data should be sent and/or receive on lines MISO and MOSI respectively.

– The MISO and MOSI lines are the two lines where data are transmitted when CS/SS is on low (here CH01

and CH02). It means that those two lines should have a changing signal when CH00 is low, and should

be idle when CH00 is high. While it should be relatively straightforward to identify the two lines,

distinguishing definitively between which corresponds to input and which to output may not be feasible

at this stage. Consequently, in the absence of a datasheet for the chip, both potential combinations

should be tested when attempting to interact with the memory chip (cf. next section).

Hardware Hacking – Methodology & Tips 76 / 103

Note: Decode SPI communication using Logic Analyzer
It is possible to decode the SPI communication using Salae Logic Analyzer software, i.e., to decode the
data transmitted over the lines MISO and MOSI (see blue boxes next to the signals in previous screenshot): To
do so, click on the + beside “Analyzers” on the right pane. Select “SPI”. Then select the identified pins in
the dialog box (in most cases, other options should be left as the default):

6.3. Interaction with SPI
6.3.1. Connection to Bus Pirate

When the SPI pinout is known, it is possible to interact directly with it using the Bus Pirate. The Bus Pirate will

be used as Master during SPI communication, and therefore the memory chip will be the slave in this

configuration. The connection must be done as follows:

Bus Pirate SPI component

GND GND

MOSI MOSI / SDI / DI / DIN / SI

MISO MISO / SDO / DO / DOUT / SO

CLK SCLK

CS CS/SS

3v3 Vcc

Important:
When interfacing with SPI memory, it is crucial to ensure that the device remains powered OFF. Otherwise,
communication will fail, as the Bus Pirate functions as the master while the MCU/SoC also acts as a master
when the device is powered on, causing the device to crash.

Hardware Hacking – Methodology & Tips 77 / 103

The picture below shows an example of the connection to the Flash memory MX25L3208E using an SOP8 chip

clip. Note that both Bus Pirate and Logic Analyzer are here connected to the chip clip. It is a way to debug the

whole process by checking the signals in real time when communicating with the chip.

6.3.2. Connection Methods
This section lists the various possible methods to connect to a chip. The method to choose will mostly depend

on the package type of the chip.

6.3.2.1. Using Chip Clips
When the chip has a simple 8-pin or 16-pin SOP/SOIC package, the easiest method consists in using a chip clip

as shown below:

Tip: The red cable on chip clip is aimed at indicating the pin #1.

Hardware Hacking – Methodology & Tips 78 / 103

6.3.2.2. Using Test Hook Clips
Jump wires with test hook clips can be a good alternative to connect only the required pins from a given chip. It

might be difficult to place the hook correctly due to the very small pin spacing, however, once they are in place,

they tend to be solidly attached to the chip. From experience, using test hook clips tends to result in fewer

connectivity issues compared to using chip clips.

6.3.2.3. Soldering Wires in Place
Another method consists in directly soldering small wires in place, directly to the chip’s pins. The main advantage

of this method is that it does not require the right connector/socket specific to the target chip, and it is often

more reliable than chip clips for example. However, due to the small scale of the chip, it requires reasonable

soldering skills to avoid false contact and short-circuit.

6.3.2.4. Chip Removal
In last resort, if all other methods have failed or are not possible, the chip removal can be considered. The chip

removal is more often required for parallel EEPROM/Flash memory chips since a programmer with special

adapter is the best way to extract data from them (cf. 7. Parallel EEPROM/Flash).

The poor man's method to remove a chip consists in using soldering iron along with desoldering wick as shown

in the following pictures. However, it's crucial to proceed with extreme caution since the pins are delicate and

prone to breakage during this process.

Hardware Hacking – Methodology & Tips 79 / 103

A preferred method consists in using a hot air gun to desolder the chip. When the package of the chip is Ball

Grid Array (BGA), all the connections are under the chip, and in this case, a hot air gun is really required and

you do not have the choice.

Whichever the chosen method and the chip type, it must be ensured that all solder has been properly removed

from the legs/pins to avoid contacts between them that could make the chip not working properly when

connected to an adapter.

Warning:
When using hot air gun to desolder the chip, you have to be careful because there is always a risk to burn the
chip if the temperature is set too high. It is recommended to avoid putting the hot air gun too close from the
chip.

Hardware Hacking – Methodology & Tips 80 / 103

Chip removal is, of course, a very invasive technique. It must be done if no other solution is possible, or at the
end of a device security assessment when PCB destruction is a risk that can be accepted. Indeed, after
desoldering a chip from a PCB, it requires a lot of skills to replace the chip back on the PCB:

– On TSOP packages, the pitch (distance between pins) is about 0.5 mm which is extremely small, this
means that the solder can easily go over multiple pins and create shorts (bridges) as shown in this
picture:

– This article also demonstrates how tedious it can be to resolder a BGA chip:
https://hackaday.com/2023/03/23/working-with-bgas-soldering-reballing-and-rework/

– Another risk with the resoldering process (but also desoldering) is possible damage to the board.
Excessive heat applied to the PCB or mishandling during manipulation can quickly result in irreversible
damage.

6.4. Firmware Extraction via SPI
When Bus Pirate has been connected to the SPI memory chip, it is possible to dump its content using the tool

flashrom, as demonstrated below:

1. Check that the target EEPROM/Flash is supported by flashrom project, on the following page:

https://wiki.flashrom.org/Supported_hardware

2. Run flashrom with the following options, It should auto-detect the memory chip:
flashrom -p buspirate_spi:dev=/dev/ttyUSB0

Make sure that it corresponds to the target. If it does not detect the chip, run:
flashrom -L
This command lists all the possible chips that the Bus Pirate can communicate with by using flashrom.

Then, select the chip that corresponds to the target, for example:
flashrom -p buspirate_spi:dev=/dev/ttyUSB0 -c W25Q64.V

3. Then, the content of the memory chip can be dumped by running the command:
flashrom -p buspirate_spi:dev=/dev/ttyUSB0 -c W25Q64.V -r firmware.bin

https://hackaday.com/2023/03/23/working-with-bgas-soldering-reballing-and-rework/
https://wiki.flashrom.org/Supported_hardware

Hardware Hacking – Methodology & Tips 81 / 103

4. The full dump is done inside the specified file. It is a raw binary file that contains the Firmware if the

target EEPROM/Flash is storing it (cf. 8. Firmware Reverse Engineering for further analysis), but it can

also contain other data depending on the device’s architecture (e.g., configuration data).

Important: Possible interferences with the component
Sometimes, extracting the content from a memory chip soldered on a PCB (e.g., using chip clip, test hook
clips, soldered wires as shown in previous sections) does not work and the chip is simply not detected at all
by flashrom.

This is often caused by interferences occurring with other components of the PCB. Indeed, even if the target
device is kept powered OFF during the whole process, it is powered by Bus Pirate through Vcc pin in order to
function. Therefore, it will also power on some adjacent components on the board, that can then enter into
interaction with the target SPI chip, and as a consequence it might cause it to stop functioning properly in the
context of SPI communication with the Bus Pirate.

When you face such a problem, the workaround often consists in removing the chip as described in 6.3.2.4.
Chip Removal, with all the drawbacks this method has…
After removal, the chip can be directly connected to the Bus Pirate, and the same process described previously
can be repeated.

Hardware Hacking – Methodology & Tips 82 / 103

7. Parallel EEPROM/Flash
Some EEPROM/Flash memory chips are not using serial protocols for communication, but rather parallel

protocols with multiple I/O lines. Such chips have therefore much more pins/legs than traditional serial memory

chips like SPI chips. The following block diagram shows an example of NAND Flash with 8 pins dedicated to I/O,

so they allow for simultaneous 8-bit data transfer.

There are predominantly two styles of chip packaging for parallel EEPROM/Flash:

– TSOP (Thin Small Outline Package) = These are usually 48 or 56 pins that are

very small and with very small space between each of them.

– BGA (Ball Grid Array) = These come in a vast array of different pin

configurations, and they are usually the trickiest to work with because all the

connections are under the chip, and there is no pin/leg reachable from the

external.

A common parallel protocol used by NAND Flash chips is ONFI (Open NAND Flash

Interface), but other protocols can be encountered.

Due to the complexity of parallel protocols with multiple I/O lines and the small

form factor of pins/legs, it is almost always required to remove the chip from the

PCB if you want to extract its content. Hot air gun should be used as shown in

6.3.2.4. Chip Removal.

7.1. Parallel EEPROM/Flash Identification
The first clue that can indicate that we are dealing with a parallel EEPROM/Flash is the chip packaging. As

shown before, if we are dealing with TSOP48, TSOP56 or a BGA memory chip, it has a good chance to be using

parallel protocol.

Hardware Hacking – Methodology & Tips 83 / 103

The next step consists in analysing the first sections of the datasheet that often give an overview of the features

and technical specification of the component. Here is an example taken from the first page of the datasheet of

the NAND Flash Micron 29F64G08CBABA. It clearly indicates that it is using ONFI parallel protocol for

communication:

7.2. Dump using Commercial Memory Reader

The memory extraction of parallel EEPROM/Flash can be done using a multi-purpose commercial reader such as
RT809H. Every package type will require a special adapter. The RT809H comes with a bunch of different
adapters/sockets that are usually sufficient for most cases. Additional adapters can also be bought if needed.

The procedure for dumping the content of a memory chip using RT809H is straightforward:

Hardware Hacking – Methodology & Tips 84 / 103

1. Unsolder the chip from the PCB.

2. Find the correct adapter/socket corresponding to the chip, and place it inside. Be very careful and make

sure that the connections are perfectly done (pin #1 from the chip must be connected to pin #1 on the

adapter), otherwise it might fry the chip when powering on the programmer.

3. Plug the adapter into the RT809H programmer. Here is an example with the NAND Flash Micron
29F64G08CBABA with a TSOP48 package:

4. Finally, the RT809H software can be used to perform a full memory dump after selecting the correct

chip reference as follows. Note that it can be quite long, depending on the memory size:

Hardware Hacking – Methodology & Tips 85 / 103

7.3. Dealing with Error Correction Code (ECC)
In NAND Flashes, bytes are stored, erased and modified in pages. It means that when a byte needs to be

modified, it cannot be modified directly. Instead, the memory page containing this byte must be read, the page

is then modified to change the byte, and finally the page is written back.

Moreover, NAND memories are prone to error, therefore an error correction algorithm is applied to all content.

It is implemented by adding spare bytes (extra space also called Out-of-Band bytes or OOB) inside the memory

to allow more data to be stored in order to ensure the integrity of saved data. This added data in spare-byte

area is called Error Correction Codes (ECC). They are computed using specific algorithms and allows the memory

controller to detect errors and fix them.

There are two different possible layouts for ECC:

– ECC is put at the end of each page.

– All the ECC are stored in one or multiple adjacent pages, typically at the end of the memory.

Hardware Hacking – Methodology & Tips 86 / 103

It is important to note that the image produced by the RT809H programmer (cf. previous section) depicts the

content of the flash memory in its purest state, without any filtering. This means that the ECC (Error-Correcting

Code) bits are included. For example, the effective storage size of the NAND Flash previously dumped is 8 GB,

however the resulting full memory dump produced by the programmer has a size of 8.8 GB, proving that those

spare bytes are included:

Furthermore, an entropy analysis of the dump using binwalk -E shows that there are repeated memory

regions with very high entropy, indicating probable locations of ECC. A hexadecimal analysis using hex editor can

also be performed.

Therefore, if you want to analyse properly the content of the dump (e.g., extract filesystems), it is necessary to

first remove the ECC. To do so, it is required to refer to the Flash’s datasheet to know the technical specifications

related to the memory layout of the target chip. For example, the datasheet of the NAND Flash Micron

29F64G08CBABA gives the following information:

Hardware Hacking – Methodology & Tips 87 / 103

Here, a total page size is 8640 bytes with 8192 bytes of data, and an ECC stored at the end of each page in

OOB of size 448 bytes. Knowing this crucial information, a simple Python script can be developed to remove

this OOB data from the raw dump:

import sys
PAGE, OOB = 8192, 448
BLOCK = PAGE + OOB
orig_dump = open(sys.argv[1], 'rb').read()
out_dump = open(sys.argv[2], 'wb')
nblocks = int(len(orig_dump) / BLOCK)
for i in range(nblocks):
 out_dump.write(orig_dump[i*BLOCK:PAGE])
out_dump.close()
orig_dump.close()

The problem with such simple script is that it does not use ECC when generating the cleaned dump, and

therefore the resulting dump is prone to errors. To overcome this issue, there are more complete tools such as

nand-dump-tools (https://github.com/SySS-Research/nand-dump-tools) that can create error-corrected data

dumps.

Note:
Dealing with ECC on NAND Flash memories can pose challenges due to the various implementations by
different manufacturers. As a result, standard tooling may not always provide out-of-the-box compatibility,
and encountering edge cases is not uncommon. Below are some references that can help:

– https://lucasteske.dev/2024/01/decoding-and-analysis-nand-flash
– https://www.blackhat.com/docs/us-14/materials/us-14-Oh-Reverse-Engineering-Flash-Memory-

For-Fun-And-Benefit-WP.pdf
– https://conference.hitb.org/hitbsecconf2019ams/materials/D1T3%20-

%20How%20to%20Dump,%20Parse,%20and%20Analyze%20i.MX%20Flash%20Memory%20Chips%2
0-%20Damien%20Cauquil.pdf

https://github.com/SySS-Research/nand-dump-tools
https://lucasteske.dev/2024/01/decoding-and-analysis-nand-flash
https://www.blackhat.com/docs/us-14/materials/us-14-Oh-Reverse-Engineering-Flash-Memory-For-Fun-And-Benefit-WP.pdf
https://www.blackhat.com/docs/us-14/materials/us-14-Oh-Reverse-Engineering-Flash-Memory-For-Fun-And-Benefit-WP.pdf
https://conference.hitb.org/hitbsecconf2019ams/materials/D1T3%20-%20How%20to%20Dump,%20Parse,%20and%20Analyze%20i.MX%20Flash%20Memory%20Chips%20-%20Damien%20Cauquil.pdf
https://conference.hitb.org/hitbsecconf2019ams/materials/D1T3%20-%20How%20to%20Dump,%20Parse,%20and%20Analyze%20i.MX%20Flash%20Memory%20Chips%20-%20Damien%20Cauquil.pdf
https://conference.hitb.org/hitbsecconf2019ams/materials/D1T3%20-%20How%20to%20Dump,%20Parse,%20and%20Analyze%20i.MX%20Flash%20Memory%20Chips%20-%20Damien%20Cauquil.pdf

Hardware Hacking – Methodology & Tips 88 / 103

8. Firmware Analysis and Reverse Engineering
8.1. Filesystem Extraction

After extracting a Linux-based Firmware from an embedded device using any of the techniques provided in

this guide, the next step is to identify the filesystem(s) in use and to extract it/them.

Common filesystems for embedded devices are:

– SquashFS = It is a compressed read-only filesystem commonly used in Linux-based Firmware. It provides

a good flexibility because it supports creating writable overlay filesystems, allowing changes to be made

to the filesystem at runtime.

– CramFS (Compressed ROM Filesystem) = Simple read-only filesystem, that supports compression.

– ROMFS (Read-Only Memory Filedystem) = Simple filesystem that is strictly read-only, and do not provide

compression support.

– YAFFS/YAFFS2 (Yet Another Flash Filesystem) = This filesystem is specifically designed for NAND Flash

memory. In particular, it incorporates ECC management for ensuring data integrity. Filesystem integrity

is also maintained by storing metadata redundantly.

– JFFS/JFFS2 (Journalized Flash Filesystem) = This filesystem is also designed for NAND Flash memory.

JFFS utilizes a journaling mechanism to track changes to the filesystem, ensuring data consistency and

integrity even in the event of sudden power loss or system crashes. It also supports ECC.

– UBIFS (Unsorted Block Image Filesystem) = UBIFS is a successor to JFFS2 and is optimized for NAND

flash memory. It offers improved performance, reliability, and scalability, with features such as

compression, encryption, and fast mounting. UBIFS supports multiple partitions.

The tool of choice here is binwalk (https://github.com/ReFirmLabs/binwalk) that is able to detect and extract

most filesystems, embedded files and other data structures from a raw memory dump. This tool also supports

recursive analysis, which is a very convenient feature when extracting a file system, since it permits to extract

all the files it contains.

Warning: False positives
Binwalk scans the input raw binary file for known file and filesystem signatures, magic numbers, and other
patterns indicating the presence of embedded data. Due to this design, it is inherently susceptible to incorrect
detections.

8.1.1. Automatic Filesystem Extraction Using Binwalk
Here is an example of automatic filesystem extraction from a raw memory dump using binwalk -e. The output

from the tool gives all the embedded files/filesystems/data detected inside the file, and it automatically extract

them recursively inside an output directory.

According to binwalk output, the content extracted from memory chip has a standard organization:

1. U-Boot Bootloader data.

https://github.com/ReFirmLabs/binwalk

Hardware Hacking – Methodology & Tips 89 / 103

2. Initial filesystem used by the Kernel (compressed using LZMA): This is required for loading device drivers

and other hardware specific utilities before the root filesystem has been mounted. Note that some

devices, however, use this kernel initial filesystem as their only filesystem.

3. Root filesystem: This is the main filesystem, which is here based on SquashFS, compressed using LZMA.

4. Configuration data

Note: Entropy variations
it is also possible to inspect the overall entropy variation of the raw dump using binwalk -E as shown below.
In particular, large memory regions appears with very high entropy, close to 1.0, that indicate almost random
binary data. Those regions actually correspond to compressed data, including the SquashFS filesystem that
is compressed using LZMA algorithm according to previous screenshot.

All the extracted files/filesystems can be found in the output directory. The most interesting for us is the

directory “squashfs-root” that contains the whole root filesystem, i.e., the filesystem used by the Linux-based

firmware of the device.

Note that binwalk is often unable to tell how long an extracted file is, so it might only remove the extraneous

bytes before the magic bytes but leaves all trailing garbage data, this can result in a lot of disk space being used

up.

Hardware Hacking – Methodology & Tips 90 / 103

Tip: A surprising alternative to binwalk that can parse a raw binary file and extract many file
types/filesystems is 7zip for Windows. It is particularly efficient with SquashFS.

8.1.2. Manual Filesystem Extraction
In an ideal world, binwalk would be sufficient to do all the job, but it is possible to come across more exotic

cases where the tool does not manage to detect the filesystem(s) or it makes incorrect detections. In such

scenario, it is required to get our hands dirty by doing manual extraction. The process will involve to first identify

the filesystem by performing a hex analysis of the dump, and then specific commands and tooling will be used

to extract and possibly decompress/decrypt the filesystem.

Here is an example of manual extraction of a SquashFS filesystem:

1. Look for the string “hsqs” (or other alternatives, see table below) inside the memory dump to identify

the presence of SquashFS. The position of the character “h” indicates the offset of the beginning of the

filesystem inside the firmware.
hexdump -C firmware.bin | grep -i ‘hsqs’

2. Extract it with dd:
dd if=firmware.bin bs=1 skip=<offset> of=filesystem.bin

3. Decompress SquashFS:
unsquashfs filesystem.bin

The tool to use to unpack files from extracted filesystem depends on the context. The next table sums up the

magic strings/numbers to look for identification along with the tools you can use:

Filesystem RO/RW Magic Tool

SquashFS RO sqsh, hsqs, qshs, sqsl unsquashfs, 7zip

JFFS(2) RW 0x07C0 (v1), 0x72b6
(v2)

jefferson

YAFFS(2) RW 0x5941ff53 unyaffs

CramFS RO 0x28cd3d45 uncramfs, 7zip

UBIFS RW 0x06101831 ubi_reader

RomFS RO 0x7275

CPIO RO “070707” cpio, 7zip

Tip: SquashFS is one of the most popular filesystems for embedded devices, and manufacturers have created
custom versions over the years. Therefore, it is possible that standard tooling is not working properly when
attempting to decompress a SquashFS filesystem. If the tools specified previously does not work, you can try
with Firmware ModKit that implements many variations: https://github.com/rampageX/firmware-mod-
kit/wiki

8.1.3. When no Filesystem is Found
Sometimes, it is not possible to identify and to extract any filesystem by following the previous steps. In this

case, you should first inspect the raw image deeper, by leveraging utilities such as:

– file
– strings (do not forget to check for all encodings: -e s/S/l/L/b/B)
– hexdump -C <bin>
– fdisk -lu <bin>

https://github.com/rampageX/firmware-mod-kit/wiki
https://github.com/rampageX/firmware-mod-kit/wiki

Hardware Hacking – Methodology & Tips 91 / 103

Finally, if nothing gives any useful data; it probably means that you are facing any of the followings:

– The firmware is bare-metal (cf. 8.4. Loading Bare-Metal Firmwares in IDA),

– The firmware is RTOS-based with a custom filesystem,

– The image is fully encrypted (this can be usually confirmed via entropy analysis).

8.2. Filesystem Analysis
On Linux-based firmwares, after extraction of the filesystem, the first thing to do is a global search for interesting

files and data, such as:

– Hardcoded credentials: usernames, passwords, private keys, …

– Hardcoded API endpoints and keys,

– Network information: IP addresses, ports, URLs, …

– Private keys

– Source code: uncompiled code and scripts

– Configuration files

– /etc/passwd and /etc/shadow files: try to crack the passwords using john.

– Services-related files: check the presence of common services’ binaries and configurations.

– All binaries: list all binaries available on the filesystem and try to get their version numbers. Check for

publicly disclosed vulnerabilities (CVE) for each binary. Tools like cve-bin-tool

(https://github.com/intel/cve-bin-tool) can help to automate this task.

– Firmware upgrade mechanism.

Many tools can assist in doing this job, for example:

– Firmwalker - https://github.com/craigz28/firmwalker

– DumpsterDiver - https://github.com/securing/DumpsterDiver

– LinPEAS - https://github.com/carlospolop/PEASS-ng

– Firmware Analysis and Comparison Tool (FACT) - https://github.com/fkie-cad/FACT_core

– FwAnalyzer - https://github.com/cruise-automation/fwanalyzer

The next step will be to locate exactly the binaries that are specific to the target device and that implement the

various features it provides, in order to get a closer look at them and to search for vulnerabilities. Of course,

binary static analysis is likely to be time-consuming since analysing compiled binaries will involve disassembling

and real reverse engineering (cf. 8.5. Simple Binary Reverse Engineering Example). It is crucial to maintain focus

on your objectives and what you seek to achieve when delving into reverse engineering of a binary; otherwise

you are likely to get lost when facing the huge amount of low-level information to process. However, sometimes,

it can be easier to perform dynamic analysis of binaries instead of static analysis, in order to be able to analyse

the behaviour of the binary at runtime using a debugger.

8.3. Firmware Emulation
The idea is to emulate either the full system or just a target binary to search for vulnerabilities using dynamic

analysis. Usually, the target device has not the same architecture as the hacker’s computer; therefore it is

necessary to first emulate the target’s architecture to be able to run the target’s Firmware or any of its binary.

Before all, it is thus required to know the target’s architecture and endianness (little-endian or big-endian). It

can be done by several ways, one of the easiest simply consists in using the file command on any binary

available in the extracted filesystem (e.g., BusyBox). For example:

– For a MIPS architecture with big-endian byte ordering:

$ file ./squashfs-root/bin/busybox

https://github.com/intel/cve-bin-tool
https://github.com/craigz28/firmwalker
https://github.com/securing/DumpsterDiver
https://github.com/carlospolop/PEASS-ng
https://github.com/fkie-cad/FACT_core
https://github.com/cruise-automation/fwanalyzer

Hardware Hacking – Methodology & Tips 92 / 103

./squashfs-root/bin/busybox: ELF 32-bit MSB executable, MIPS, MIPS32 rel2

version 1 (SYSV), dynamically linked, interpreter /lib/ld-uClibc.so.0,

stripped

– For ARM architecture with little-endian byte ordering:

$ file ./squashfs-root/bin/busybox

./squashfs-root/bin/busybox: ELF 32-bit LSB executable, ARM, EABI5 version 1

(SYSV), dynamically linked, interpreter /lib/ld-musl-armhf.so.1, no section

header

8.3.1. Binary Emulation
The emulation of a single binary can be done using QEMU (https://github.com/qemu/qemu). It is capable to

emulate both MIPS and ARM architectures. Its installation is straightforward:

sudo apt-get install qemu qemu-user qemu-user-static qemu-system-arm qemu-system-
mips qemu-system-x86 qemu-utils qemu-system qemu-user qemu-efi-aarch64

Then, the QEMU binary to use will depend on the identified target’s architecture and endianness:

– qemu-mips = for 32-bit big-endian MIPS binaries.

– qemu-mipsel = for 32-bit little-endian MIPS binaries.

– qemu-mips64 = for 64-bit big-endian MIPS binaries.

– qemu-mips64el = for 64-bit little-endian MIPS binaries.

– qemu-arm = for 32-bit little-endian ARM binaries.

– qemu-armeb = for 32-bit big-endian ARM binaries.

For example, to emulate a 32-bit big-endian MIPS binary, run the following command:

qemu-mips -L ./squashfs-root/ ./squashfs-root/bin/ls

8.3.2. Full System Emulation
Sometimes, the emulation of the whole Firmware is interesting. It can indeed be interesting to have all the

services provided by the embedded device to be running in an emulated environment. Of course, some

components of the firmware are likely to not work properly since no access to the appropriate hardware is

accessible inside such an environment. However exposed services such as web dashboard, command-line

interface (via SSH/Telnet) or others should be running fine.

It can therefore allow for exploitation attempts on a live system with the possibility to perform runtime analysis

in parallel, to check debug logs, to run binaries under debugger, to see kernel messages, etc.

There are some tools, usually based on QEMU, that facilitate the emulation of the complete Firmware:

– Firmadyne - https://github.com/firmadyne/firmadyne

– Firmware Analysis Toolkit - https://github.com/attify/firmware-analysis-toolkit

8.4. Loading Bare-Metal Firmwares in IDA
Bare-metal firmwares run directly on the hardware without an operating system. They are directly stored on the

non-volatile memory embedded inside the MCU. Such firmware does not have any kernel and filesystem; it is

just one single binary running on the MCU that is interacting directly with the hardware/peripherals without

using any intermediary (e.g., device drivers) like in a typical operating system.

https://github.com/qemu/qemu
https://github.com/firmadyne/firmadyne
https://github.com/attify/firmware-analysis-toolkit

Hardware Hacking – Methodology & Tips 93 / 103

Analyzing bare-metal firmware is significantly more challenging compared to Linux-based firmware, as there

are no workarounds available. It invariably requires reverse engineering using tools such as IDA or Ghidra.

In order to load bare-metal firmwares in IDA, some information about it is needed:

– Architecture,

– Endianness,

– Load/base address (address where the firmware is supposed to be loaded in memory),

– Entry point.

Below are some explanations about the process to follow:

1. In order to identify the architecture type (ARM, MIPS, …) of the firmware, you can use the command

binwalk –opcode that scans the provided file for common executable opcode signatures. As always,

it is prone to false detection but will often do the job, like in this example where it detects that the dump

of Proxmark3’s firmware has an ARM architecture:

This information can be confirmed from the specification of the MCU where the firmware is running, so

you should also refer to the datasheet.

2. Then, to identify the endianness (based on heuristics), you can use the tool binbloom

(https://github.com/quarkslab/binbloom). In this example, it is 32-bit little-endian ARM:

3. Now, you can begin loading the firmware inside IDA by selecting the identified architecture and

endianness, as follows:

https://github.com/quarkslab/binbloom

Hardware Hacking – Methodology & Tips 94 / 103

4. Then, IDA asks for information about the memory organization i.e., the ROM and RAM section addresses

and sizes. This information can be found inside the “Memory Mapping” section of the MCU’s datasheet.

For instance, if we take the MCU AT91SAM7S512 from where the Proxmark3’s firmware has been

extracted using JTAG (cf. procedure in 5.3. Interaction with JTAG and 5.4. Firmware extraction using

JTAG), we must set in IDA the configuration detailed in the next screenshot based on the data extracted

from the documentation. Note that the ROM section corresponds to the mapping of the non-volatile

memory that stores the firmware internally, i.e., the “Internal Flash”:

Note: When memory mapping in unavailable
If the datasheet is not available, and there is no easy way to know the base address of the firmware, the tool
binbloom can assist to give the best candidates by scanning the image and using several heuristics. Technical
information about how this tool works is available at: https://blog.quarkslab.com/binbloom-blooms-
introducing-v2.html and https://www.sstic.org/2022/presentation/binbloom_v2/.

5. In the section “Input file”, we must put the “Loading address” of the raw image we are loading

in IDA. Since the image is a full dump of the internal Flash, it means that it is mapped at the beginning

of the ROM section, and therefore we must simply put the same address as the ROM start address (here

0x100000). If for any reason, you have made a dump starting at a specific offset inside ROM, you should

add this offset to the ROM start address in order to calculate the loading address.

6. Some warnings are then usually displayed by IDA:

– With ARM, it is possible to see a message regarding the detection of ARM Thumb instructions:

refer to the Note section below.

– A message indicating that the entry point is not known: this is normal since a bare-metal

firmware is a raw binary file without a well-known structure such as PE files or ELF files that have

known fields indicating the address of the entry point.

https://blog.quarkslab.com/binbloom-blooms-introducing-v2.html
https://blog.quarkslab.com/binbloom-blooms-introducing-v2.html
https://www.sstic.org/2022/presentation/binbloom_v2/

Hardware Hacking – Methodology & Tips 95 / 103

Note: ARM Thumb
In the context or ARM architecture in embedded devices, it is common to encounter ARM “Thumb” which has
a compressed instruction set compared to standard ARM architecture: it is a subset of the regular ARM
instructions, that are all only 16-bit long. You must refer to the MCU datasheet to check it ARM “Thumb” is
used.

When ARM “Thumb” code is detected by IDA when loading an image, it will display this pop-up:

When ARM “Thumb” is used, you have to switch between regular ARM instructions and Thumb instructions
in IDA after loading the firmware. To do so, go to the base address and press Alt+G, then set the value 0x1
in the “Segment Register Value” pop-up. To confirm the change, the note “CODE16” will replace
“CODE32”:

7. The next step is to find the entry point of the firmware. This task can be tricky and depends on the

architecture and processor. A common way to find the address of the entry point is to refer to the “Reset

vector” in the “Interrupt Vector Table”. This is the address from which the CPU will start executing code

Hardware Hacking – Methodology & Tips 96 / 103

when the device is reset. The address of the table and the offset of the “Reset vector” inside this table

depends on the CPU. Therefore, you will again have to search this information in the datasheet.

Nevertheless, on many ARM configurations, the table is located at address 0x0 and the “Reset vector”

is the second element in this table, and therefore located at address 0x4.

For more information about this, refer to these links:

– Video demonstrating how to find the entry point in ARM firmware -

https://www.youtube.com/watch?v=V6ZySLopflk

– Another example on how to load bare-metal ARM firmware -

https://www.pentestpartners.com/security-blog/how-to-do-firmware-analysis-tools-tips-and-

tricks/

When the entry point is found, jump to it in IDA, and press the key “C” to start disassembling.

8. You will see that IDA has successfully disassembled the functions as shown below (functions are listed

in the left pane):

9. A last important point to mention is the fact that bare-metal firmwares are communicating directly to

hardware components through specific memory addresses. The memory mapping in the MCU’s

datasheet should give the details about the memory ranges corresponding to the various peripherals.

For example, the MCU AT91SAM7S512 reserves the range 0xF0000000-0xFFFFFFFF for

communication with peripherals. This range is split in multiple sub-ranges that correspond to different

peripherals, as shown below. In the datasheet, there is also a table explaining the mnemonics used:

https://www.youtube.com/watch?v=V6ZySLopflk
https://www.pentestpartners.com/security-blog/how-to-do-firmware-analysis-tools-tips-and-tricks/
https://www.pentestpartners.com/security-blog/how-to-do-firmware-analysis-tools-tips-and-tricks/

Hardware Hacking – Methodology & Tips 97 / 103

Therefore, in order to make reverse engineering of the firmware more convenient and to be able to

quickly see if a memory address used inside an instruction is referring to a peripheral (which would mean

that the firmware is accessing/using a hardware component), it is recommended to add the memory

mapping of peripherals inside IDA. This can be done by creating memory segments via Edit >
Segments > Create segment. For every peripheral, a segment should be created by specifying its

name, start address and end address.

Hardware Hacking – Methodology & Tips 98 / 103

8.5. Simple Binary Reverse Engineering Examples
Binary reverse engineering is a whole other topic and a full methodology is out-of-scope of this guide. Skills

involved will also depend on the architecture of the targeted embedded device. Keep in mind that decompilers

provided by IDA or Ghidra (generating pseudo-code C from assembly) can be a great help throughout the

reverse engineering process to speed it up.

8.5.1. Discovery of a Backdoor Command
This example is taken from a Go binary discovered on a network device with a Linux-based firmware. This binary

was set as the default shell for the standard user used when starting the device. As a consequence, it was

providing a restricted shell (restricted CLI) with a predefined list of available commands to the end users that

connect to the device using a Telnet/SSH service or using UART. The supported commands were listed in the

official documentation. However, when opening the binary in IDA, the list of functions was giving some hints

that a “secret” command was also actually supported:

In particular, after some analysis, it appears that the function ***_commands__ptr_secret_IsMatch is

checking if an input is equal to the string “support” (the check is done in three steps: 1 dword, 1 word and 1

byte). The ASM code responsible for this check can be seen in the red box in the following screenshot from the

IDA disassembler.

Hardware Hacking – Methodology & Tips 99 / 103

Therefore, it can be deduced that this function is used to check if the user has issued the command “support”

in the CLI. This command is not mentioned in the official documentation or in the “help” message (that lists

all the supported commands). Thus, it seems like it is a secret command.

When analyzing the cross-references of this function, it appears that there exists an array of pointers containing

its address. This array is labelled ***_commands_secret_comma__ptr_mdr_Node and it is referenced in the

function ***_commands_init_ializers which is the first main big function in charge of handling the user

input from the CLI. It confirms that the function is taking the command issued by the CLI user as input.

Hardware Hacking – Methodology & Tips 100 / 103

A further analysis shows that if the input command is “support”, then the function named

***_commands_doSupport is called, as shown below:

The function ***_commands_doSupport is therefore handling the secret command “support”. This is an

interesting discovery that should be investigated deeper during a security assessment, since it might lead to root

shell access or another high-privileged feature, depending on its implementation.

Hardware Hacking – Methodology & Tips 101 / 103

8.5.2. Discovery of a Command Injection Vulnerability (Restricted Shell
Bypass)

This second example is taken from the same Go binary as before. As a remainder, this binary is implementing a

restricted shell; therefore an attacker would be interested in finding a way to bypass the restrictions enforced

and to be able to run arbitrary command on the underlying system. Usually, the first step is to get a quick look

at the strings embedded in the binaries. More precisely, it can be relevant to look at the strings referring to

binary paths. A first idea can be to look at strings containing “bin/” since it is a well-known folder storing most

of the binaries on the system:

In particular, the red box in the previous screenshot highlights the presence of command lines with the format
specifier %s (type string). By looking at references of these strings in IDA, it is possible to easily locate the

disassembled code responsible for building and executing this command. These interesting strings are

referenced by the function named ***_clisys_DumpBfdStatus, which permits to deduce to which CLI

command it is related to.

Such disassembled code can be boring to read, so the IDA decompiler can come to the rescue and be used

to generate the corresponding pseudo-code C, as shown below:

Hardware Hacking – Methodology & Tips 102 / 103

It shows more clearly that the value passed as a parameter of the vulnerable CLI command is directly inserted

into the command line (at the location of the format specifier %s) without prior sanitization or filtering. The

command is then executed right after. Therefore, it is possible to abuse the CLI command to execute any arbitrary

command on the underlying Linux system (via /bin/bash), by injecting it inside one of the vulnerable options.

This vulnerability was exploited in 4.6.3. Post-Boot Exploitation: Restricted Shell.

Hardware Hacking – Methodology & Tips 103 / 103

References

– Hardware Hacking 1-01 – Training BT by Team R.E.S.T.A.R.T.
– Practical IoT Hacking: The Definitive Guide to Attacking the Internet of Things – No Starch Press (2021)
– IoT Penetration Testing Cookbook – Packt Publishing (2017)
– https://www.synacktiv.com/publications/i-hack-u-boot
– https://cybergibbons.com/hardware-hacking/recovering-firmware-through-u-boot/
– https://docs.u-boot.org/
– https://blog.nviso.eu/2020/02/21/iot-hacking-field-notes-1-intro-to-glitching-attacks/
– https://optivstorage.blob.core.windows.net/web/file/55e86eae3f04450d9bafcbb3a94559ca/JTAG.Wh

itepaper.pdf
– https://sergioprado.blog/2020-02-20-extracting-firmware-from-devices-using-jtag/
– https://www.makemehack.com/2020/03/how-to-find-the-jtag-interface.html
– http://www.jtagtest.com/pinouts/
– https://www.xjtag.com/about-jtag/jtag-a-technical-overview/
– https://www.youtube.com/watch?v=GgMOBhmEJXA (JTAGulator: Introduction and Demonstration –

Joe Grand)
– http://dangerousprototypes.com/docs/Bus_Pirate
– https://openocd.org/doc/pdf/openocd.pdf
– https://www.blackhat.com/docs/us-14/materials/us-14-Oh-Reverse-Engineering-Flash-Memory-For-

Fun-And-Benefit-WP.pdf
– https://conference.hitb.org/hitbsecconf2019ams/materials/D1T3%20-

%20How%20to%20Dump,%20Parse,%20and%20Analyze%20i.MX%20Flash%20Memory%20Chips%20-
%20Damien%20Cauquil.pdf

– https://www.macronix.com/Lists/ApplicationNote/Attachments/1937/AN0296V3-
How%20to%20handle%20the%20spare-byte%20area%20of%20Macronix%20NAND%20Flash-1209.pdf

– https://book.hacktricks.xyz/hardware-physical-access/firmware-analysis
– https://scriptingxss.gitbook.io/firmware-security-testing-methodology/
– https://blog.quarkslab.com/binbloom-blooms-introducing-v2.html
– https://www.pentestpartners.com/security-blog/how-to-do-firmware-analysis-tools-tips-and-tricks/
– Hardware Hacking Tutorial video series by @MakeMeHack -

https://www.youtube.com/@MakeMeHack
– https://github.com/koutto/hardware-hacking/blob/master/Hardware-Hacking-Experiments-Jeremy-

Brun-Nouvion-2020.pdf
– https://www.hexacon.fr/slides/hexacon_draytek_2022_final.pdf
– https://elinux.org/images/b/b1/Filesystems-for-embedded-linux.pdf
– https://media.defcon.org/DEF%20CON%2027/DEF%20CON%2027%20presentations/DEFCON-27-

Philippe-Laulheret-Introduction-to-Hardware-Hacking-Extended-Version.pdf
– https://github.com/CyberSecurityUP/Awesome-Hardware-and-IoT-Hacking

https://www.synacktiv.com/publications/i-hack-u-boot
https://cybergibbons.com/hardware-hacking/recovering-firmware-through-u-boot/
https://docs.u-boot.org/en/latest/usage/cmd/md.html
https://blog.nviso.eu/2020/02/21/iot-hacking-field-notes-1-intro-to-glitching-attacks/
https://optivstorage.blob.core.windows.net/web/file/55e86eae3f04450d9bafcbb3a94559ca/JTAG.Whitepaper.pdf
https://optivstorage.blob.core.windows.net/web/file/55e86eae3f04450d9bafcbb3a94559ca/JTAG.Whitepaper.pdf
https://sergioprado.blog/2020-02-20-extracting-firmware-from-devices-using-jtag/
https://www.makemehack.com/2020/03/how-to-find-the-jtag-interface.html
http://www.jtagtest.com/pinouts/
https://www.xjtag.com/about-jtag/jtag-a-technical-overview/
https://www.youtube.com/watch?v=GgMOBhmEJXA
http://dangerousprototypes.com/docs/Bus_Pirate
https://openocd.org/doc/pdf/openocd.pdf
https://www.blackhat.com/docs/us-14/materials/us-14-Oh-Reverse-Engineering-Flash-Memory-For-Fun-And-Benefit-WP.pdf
https://www.blackhat.com/docs/us-14/materials/us-14-Oh-Reverse-Engineering-Flash-Memory-For-Fun-And-Benefit-WP.pdf
https://conference.hitb.org/hitbsecconf2019ams/materials/D1T3%20-%20How%20to%20Dump,%20Parse,%20and%20Analyze%20i.MX%20Flash%20Memory%20Chips%20-%20Damien%20Cauquil.pdf
https://conference.hitb.org/hitbsecconf2019ams/materials/D1T3%20-%20How%20to%20Dump,%20Parse,%20and%20Analyze%20i.MX%20Flash%20Memory%20Chips%20-%20Damien%20Cauquil.pdf
https://conference.hitb.org/hitbsecconf2019ams/materials/D1T3%20-%20How%20to%20Dump,%20Parse,%20and%20Analyze%20i.MX%20Flash%20Memory%20Chips%20-%20Damien%20Cauquil.pdf
https://www.macronix.com/Lists/ApplicationNote/Attachments/1937/AN0296V3-How%20to%20handle%20the%20spare-byte%20area%20of%20Macronix%20NAND%20Flash-1209.pdf
https://www.macronix.com/Lists/ApplicationNote/Attachments/1937/AN0296V3-How%20to%20handle%20the%20spare-byte%20area%20of%20Macronix%20NAND%20Flash-1209.pdf
https://book.hacktricks.xyz/hardware-physical-access/firmware-analysis
https://scriptingxss.gitbook.io/firmware-security-testing-methodology/
https://blog.quarkslab.com/binbloom-blooms-introducing-v2.html
https://www.pentestpartners.com/security-blog/how-to-do-firmware-analysis-tools-tips-and-tricks/
https://www.youtube.com/@MakeMeHack
https://github.com/koutto/hardware-hacking/blob/master/Hardware-Hacking-Experiments-Jeremy-Brun-Nouvion-2020.pdf
https://github.com/koutto/hardware-hacking/blob/master/Hardware-Hacking-Experiments-Jeremy-Brun-Nouvion-2020.pdf
https://www.hexacon.fr/slides/hexacon_draytek_2022_final.pdf
https://elinux.org/images/b/b1/Filesystems-for-embedded-linux.pdf
https://media.defcon.org/DEF%20CON%2027/DEF%20CON%2027%20presentations/DEFCON-27-Philippe-Laulheret-Introduction-to-Hardware-Hacking-Extended-Version.pdf
https://media.defcon.org/DEF%20CON%2027/DEF%20CON%2027%20presentations/DEFCON-27-Philippe-Laulheret-Introduction-to-Hardware-Hacking-Extended-Version.pdf
https://github.com/CyberSecurityUP/Awesome-Hardware-and-IoT-Hacking

	Document History
	1. Tools
	1.1. Hardware Tools
	1.2. Software Tools

	2. Electronics 101
	2.1. Recognize Main Electronic Components
	2.2. Connectors and Cables
	2.3. Memory Types
	2.3.1. Volatile Memory
	2.3.2. Non-Volatile Memory

	2.4. Chip Package Types
	2.5. Communication Modes

	3. Information Gathering
	3.1. Reconnaissance
	3.2. Chips Identification
	3.3. Debug Interfaces Candidates
	3.4. Annotated Overview of PCB
	3.5. Attack Surface Mapping
	3.6. Ways to Get Access to Firmware

	4. UART
	4.1. UART Protocol
	4.2. UART Pinout Identification
	4.3. Baud Rate identification
	4.3.1. Baud Rate Identification using Logic Analyzer
	4.3.2. Baud Rate Identification using Bruteforce
	4.3.3. Baud Rate Identification using PicoScope

	4.4. Interaction with UART
	4.4.1. Using UART-to-USB serial adapter FT232
	4.4.2. Using Bus Pirate

	4.5. U-Boot Bootloader Exploitation
	4.5.1. Boot Logs Analysis
	4.5.2. Access the Bootloader
	4.5.2.1. Standard Method
	4.5.2.2. Flash Memory Glitching

	4.5.3. U-Boot Abuse to Dump the Firmware
	4.5.3.1. Via command md (Memory Display)
	4.5.3.2. Using SD Card (command mmc)
	4.5.3.3. Using USB (command usb)
	4.5.3.4. Using TFTP (command tftp)

	4.5.4. U-Boot Abuse to Get a Shell

	4.6. Post-Boot Exploitation
	4.6.1. Unauthenticated Root Shell
	4.6.2. Authentication Required
	4.6.3. Restricted Shell (CLI)

	5. JTAG
	5.1. JTAG Protocol
	5.2. JTAG Pinout Identification
	5.2.1. Standard JTAG Pinout
	5.2.2. Using JTAGulator
	5.2.3. Alternative Method using JTAGenum
	5.2.4. Advanced Research using Visual Inspection of Lines on PCB

	5.3. Interaction with JTAG
	5.4. Firmware Extraction using JTAG

	6. SPI Memory
	6.1. SPI Protocol
	6.2. SPI Memory Identification
	6.2.1. Using Datasheet
	6.2.2. Using Logic Analyzer

	6.3. Interaction with SPI
	6.3.1. Connection to Bus Pirate
	6.3.2. Connection Methods
	6.3.2.1. Using Chip Clips
	6.3.2.2. Using Test Hook Clips
	6.3.2.3. Soldering Wires in Place
	6.3.2.4. Chip Removal

	6.4. Firmware Extraction via SPI

	7. Parallel EEPROM/Flash
	7.1. Parallel EEPROM/Flash Identification
	7.2. Dump using Commercial Memory Reader
	7.3. Dealing with Error Correction Code (ECC)

	8. Firmware Analysis and Reverse Engineering
	8.1. Filesystem Extraction
	8.1.1. Automatic Filesystem Extraction Using Binwalk
	8.1.2. Manual Filesystem Extraction
	8.1.3. When no Filesystem is Found

	8.2. Filesystem Analysis
	8.3. Firmware Emulation
	8.3.1. Binary Emulation
	8.3.2. Full System Emulation

	8.4. Loading Bare-Metal Firmwares in IDA
	8.5. Simple Binary Reverse Engineering Examples
	8.5.1. Discovery of a Backdoor Command
	8.5.2. Discovery of a Command Injection Vulnerability (Restricted Shell Bypass)

	References

