O
<
%
O
<
T
n
%
<
=
=
%
<
T

W
O
—
g
>
O
O
]
O
a
O
T
—
L
=

Jérémy Brun

Version 1.0 - 02.2024

Table of content

[DTo Tl 8 o =T 0 1) o N 4
i oo T PO U ST URTPPPOTOVSRPRRRIOt 5
11 HArAWare TOOIScoueieeiiieetee ettt ettt s et e sie e e st e e s be e e sa bt e s beeeabeeesabeeesnseesaseesaseeesareeenns 5
1.2, SOFEWAIE TOOIS «.eeeeeie ettt et ettt e st e e s bt e e st esbbeesnteesabeeesabeesbeeeaneeesabeeesareens 10
P =3 1= Tot i o] Yok A TP U PR PPN 12
2.1. Recognize Main Electronic COMPONENTSccccvieieiiiiieeecieee e eeitee e eete e e eetee e e e evae e e esbae e e eeareeeeeenseeeeennrenas 12
2.2, CONNECLOrS ANA CABIS....ci ittt ettt e s ee e st esbeesbee e s beeesaseesabeesaneeesareens 15
2.3. IV I MIONY TYPES e e e e e e e e e s e e e s e s aaassaaeassassssasasssssasasssssssasasassanannennnns 16
2.3.1. VoY X411 1V =Y s oY oY 2R 16
2.3.2. NON-VOIAtIIE IMEBIMOIY ittt e et e et e e e e et e e e e eabae e e e abae e e eenbaeeeeenbeneeennrenas 17

D € o 1 oI - [l Y= {cT R/ o 1T U 17
2.5, COMMUNICAtION IMOGES ...ttt ettt et ettt e st e sttt e st e e sabeesbbeesabeeesabeesabeesbeeesareens 19

K T [0} o) g s 4[] T G- N o U= T V=R PUP PSRNt 20
3.1. RECONNAISSANCE ...ttt e s s e e e s s e e e s s enre e e s s snre e e s s nrae s 20
3 @ o 11 o T (o [T o] 1 Tor= [] o IS 21
3.3. Debug Interfaces Candidatescciiieciiiieiiiiee ettt e et e e e et e e e e ate e e e e aba e e e earae e e e nraeeeennneeas 26
3.4, Annotated OVErvViEeW OF PCBi........cooiiiiiiiiiieeieereesiee sttt st e sre e s sn e et nneenns 29
R T N - [o] T = [l |V, =T o] o1 =P 31
3.6. Ways 10 GEt ACCESS TO FIFMWATIEuuiiiiiiiiiiiiiiiiiiiiiieieiteeuererererererarerererererera———.. 32
L U 7 N S OO 35
A1, UART PrOtOCOI ...eeeiiiiteeieee ettt st sttt et ettt et b e e b e smeesaeesateean e e reesneesanenas 35
4.2, UART PinOUt [dentifiCation.......cooeeriiiiieiieeeeeee sttt s s e e 36
4.3, Baud Rate identifiCation........coieiieiiiiieieee et 38
4.3.1. Baud Rate Identification Using LOZIC ANAIYZETc..uviiiiieie ettt e 38
4.3.2. Baud Rate Identification Using Bruteforce........oooouiiiiiciie e e 40
4.3.3. Baud Rate Identification USING PiCOSCOPE.....ccuiiiiiiiiii ettt 40

4.4, Interaction WIth UARTi ittt ettt st sttt e b e e sbe e st e et e e beesbeesreesane e 41
4.4.1. Using UART-t0-USB serial adapter FT232ciiiiiiiiciiiiieee e cecciirtee e e e e e ecvnvene e e s e e e ennnee e e e e e e e ennnnnns 42
4.4.2. UL [T = 2 TV o [- | SRR 43

4.5. U-Boot Bootloader EXPlOitation.........coceeiiiiiiiee ettt e e e e e e e rre e e e e e e e e b e e e e e e e eeaas 44
4.5.1. 2 To Yoy fl oY ={ Y o F= 1 AV £ PR 44
4.5.2. ACCESS ThE BOOTIOAUETiiiiiiieieeeeeet ettt sttt et e b e saeesane e 47
45.2.1. StANAArd MELhOD ... e s s s e e s 47
4.5.2.2. Flash Memory GIEChINGceeei oo e e e e e e reae e s 50

4.5.3. U-Boot Abuse to DUMP the FIrMWAIEcoociiiiiiiiiee ettt tre e e e e e e s e 51

4.5.3.1. Via command md (Memory DiSPIay).....cccueeiicciie ettt e et e et e e e aaee e e e 51
4.5.3.2. Using SD Card (COMMANG MIMIC)..eiiiuiieiiieeiieeciee et seeetteesteeseeeesateestaeesnseesssaeesneeesnsaeesnnes 52
4.5.3.3. Using USB (COMMANA USD) ..viiiiiiiiieiciiiee ettt e e e e e ebae e e e ente e e e ebeaeeeennes 53
4.5.3.4. Using TFTP (COMMANd tFEP).ueeeiciiiee ittt et e e et e e e s ate e e e ebreeeeeanes 54

45.4. U-BoOt AbUSE t0 Gt @ Shell..c..eeiiiieee ettt st s 55

4.6. (Lo 2 Te Yo} o d o] [o] 1 d o o HP PP 55
4.6.1. Unauthenticated ROOT Shell.......couiiiiiiiie et st 55
4.6.2. AUthentication REQUITEM.........vviiieieie et e e e e bee e e et ae e s e ntae e e eeasaeeeenrneas 56
4.6.3. RESTFICEEA SNE@II (CLI) 1uvvveeeieiiieetieeeeee ettt eeeetre e e e e e eebb e e e e e e e eebabeeeeeeeeesnassbaeeeeeeeeesnsnsrnes 57

TR 1 7 C P PP PPPPPPPPPPTPPPPPPPPNt 59
5.1. JTAG PrOTOCO ccineiiitiiete ettt ettt ettt e s e e bt e s ate e s bt e e sabeesabeesbeeesabeeebbeesabeesabeeesareenn 59
5.2, JTAG Pinout Identification........ooeoieiiiiiiieiee ettt st s st e 61
5.2.1. StANAArd JTAG PINOUL...c.eiiiiiiieitiee ettt ettt st sttt e e esbe e st e e teesbeesbeesane e 61
5.2.2. (O T oY= N X GV - | o o PR 63
5.2.3. Alternative Method USING JTAGENUMuviiiiiiiie ettt ettt e esree e e sree e e seree e e s aree e s s snbaeeessaseeeesnareeas 65
5.2.4. Advanced Research using Visual Inspection of Lines on PCB.........cccceevvciiiiiiciiee e, 65

5.3, INTeraction With JTAGoo ittt sttt ettt e e b e e s be e saeesabe st e e beenbeenns 67
5.4, Firmware EXtraction USING JTAG ...coeeeeieieeeee et e 71
(ST o I 1Y (<1 o Vo] o VPR PPPPPPPPPPPPPPPPRE 73
6.1, SPIPIOTOCOL .. .ottt sttt ettt et e r e b e s re e s san e e r e ne s 73
6.2. SPIMemOory IdentifiCationcoiiciiiiiciie e e e e ae e e e eareeas 74
6.2.1. (U1 Y= D) = 1] a1 APPSR 74
6.2.2. (U 1Y = oY= Toly N =1 1Y 7= PRSP 75

6.3, INTEraction WIth SPl.....c..oo ittt et sr et 76
6.3.1. ConNection t0 BUS PIirate.......ciiiiiiiiiiiiiiiiiiicricicc e 76
6.3.2. CoNNECTION METNODS. ... ittt st e e e sane e 77
6.3.2.1. L0 T 1 o T T 1T o XS 77
6.3.2.2. LU g T T o To] 1 T o LSRR 78
6.3.2.3. N o] (o (YR oY AV T S g T o - ol TSP SRR 78
6.3.2.4. (0 YT o3 20T 1 4T 1V | PSS 78

6.4. Firmware EXEraction Via SPIooo i 80
7. Parallel EEPROM/FIASI ...ttt ettt ettt ettt e e e e e e e ettt e e e s eeae s ea et eeeesseaanssaateeeesssasasreaeeeeesssasansreneeees 82
7.1. Parallel EEPROM/FIash Id@NTIfICAtION .oouveeeeeeeeeeeeeeeeeeee ettt et e ettt e e e e s e seessereeeeeessesasreseeeeesssanas 82
7.2. Dump using Commercial Memory REAUENcocecviieiiiiiiee ettt e e sree e s e e s rbre e e e baee e s eareeas 83
7.3. Dealing with Error Correction Code (ECC) ...ttt etre e et evee e e e enee e e e 85
8. Firmware Analysis and ReVerse ENGINEEIINGuuiiiiiii ittt eeecrree e e e e e e e ra e e e e e e s e nnraaeeeeas 88
8.1. 11T VA (= g T =T = ot [o TR 88

8.1.1.

Automatic Filesystem Extraction Using Binwalk..........occoueiiiiiiiiiiiiiiie e 88

8.1.2. Manual Filesystem EXtraCtionoccueeiiecieee ittt s ree e s ree e s s e e s s sbee e s ssnbeeessnaneeas 90

8.1.3. When No Filesystem iS FOUNGcoccuiiiiiiieeiciee ettt et e e e s abee e s e e e sabee e e s aneeas 90

0 1 1YY ¢ o N LY LY LSS 91
8.3, FIrmWare EMUIGIONcoii ettt st sttt sb e b e e sane e 91
8.3.1. 21 oY AV =0 o101 £ o T o PRSP 92
8.3.2. U1 I VA 4T o I =10 U1 = o o I PP 92

8.4. Loading Bare-Metal FIrmwares in IDAcoiiiiiii ettt e s ree e s sree e s s sbee e s s sabe e e s ssnbeeeesnreeas 92
8.5. Simple Binary Reverse ENgineering EXamPIESooiiiciiieieiiiiie ettt e e vre e e e e e s eaaeee e 98
8.5.1. Discovery of a Backdoor COmMMaNdueiiiiiiiiiiiiie ettt vre e e e ebae e e e 98
8.5.2. Discovery of a Command Injection Vulnerability (Restricted Shell Bypass)cccceceveeevveennnenn. 101
RETEIEINCES ..ttt ettt s ae e st e et e e bt e s bt e s et e s bt e bt e bt e b e e s re e ese e er e e reesreenane e 103

Document History

Version Description

1.0 12.02.2024 First version

Hardware Hacking — Methodology & Tips 4/103

1. Tools
1.1. Hardware Tools

— Various tools to open devices:

— Multimeter:

Hardware Hacking — Methodology & Tips

it

” //"'/',l/;

?ﬁ///ﬁ,,

['Ill/‘/\
WIryy
e"j(ili//}

‘1‘

5/103

PicoScope (USB PC Oscilloscope) (optional):

PicoScope® 2000 Serles
oscilloscopes and MSOs

Soldering iron:

ol

— Hotairgun:

— Pin headers (that can be soldered):

— Jump wires (male/male, male/female, female/female) and test hook clips:

— Chip clips (for 8-pin and 16-pin SOIC/SOP Flash/EEPROM):

— Bus Pirate (v3.6 recommended) — http://dangerousprototypes.com/docs/Bus _Pirate:

- JTAGulator - https://www.parallax.com/product/jtagulator/:

— UART-to-USB serial adapter FT232RL:

Hardware Hacking — Methodology & Tips 8/103

http://dangerousprototypes.com/docs/Bus_Pirate
https://www.parallax.com/product/jtagulator/

- Board “Blue Pill” or “Black Pill” with Arduino-compatible STM32F103 microcontroller (optional, can be
used as a cheaper alternative to JTAGulator) - https://www.alibaba.com/product-detail/STM32-Black-
Pill-compatible-IC-APM32F103C 1600128162230.html

— Llogic Analyzer = compatible with Salae Logic software - https://www.az-
delivery.de/fr/products/saleae-logic-analyzer:

— Commercial memory programmer RT809H with multiple adapters/sockets for eMMC/NAND Flash -
https://fr.aliexpress.com/item/32957478812.html:

https://www.alibaba.com/product-detail/STM32-Black-Pill-compatible-IC-APM32F103C_1600128162230.html
https://www.alibaba.com/product-detail/STM32-Black-Pill-compatible-IC-APM32F103C_1600128162230.html
https://www.az-delivery.de/fr/products/saleae-logic-analyzer
https://www.az-delivery.de/fr/products/saleae-logic-analyzer
https://fr.aliexpress.com/item/32957478812.html

1.2.

Name

PicoScope software

Software Tools

Description

Visualize outputs from PicoScope

Link

https://www.picotech.com/downloads

Salae Logic Analyzer

Visualize outputs from Logic Analyzer

https://www.saleae.com/downloads/

OpenOCD

Interact with JTAG

https://openocd.org/

Flashrom

Identify, read, write Flash memory
chips

https://www.flashrom.org/

Binwalk

Analyze and dissect Firmware dump

https://github.com/ReFirmLabs/binwalk

Screen / minicom /
putty

Terminal emulator

Baudrate.py

Baud rate for UART identification via
bruteforce

https://github.com/devttysO/baudrate

UART Bruteforcer

Python script to bruteforce
authentication via UART

https://github.com/firefart/UARTBruteF
orcer

Uboot-mdb-dump

Python script to dump Firmware
through U-Boot via UART

https://github.com/gmbnomis/uboot-
mdb-dump

JTAGenum

Tool to identify JTAG pinout using a
device with Arduino-compatible
microcontroller or Raspberry Pi, as an
alternative to JTAGulator

https://github.com/cyphunk/JITAGenum

NAND Dump Tools

Tool to create error-corrected data
dumps from raw NAND Flash memory
dumps

https://github.com/SySS-
Research/nand-dump-tools

Squashfs-tools

Tools to create and extract Squashfs
filesystems

https://github.com/plougher/squashfs-
tools

7zip for Windows

Alternative efficient tool for unpacking
SquashFsS filesystem

https://github.com/onekey-

Jefferson JFFS2 filesystem extraction tool 3

sec/jefferson/
Unyaffs YAFFS2 filesystem extraction tool https://github.com/whataday/unyaffs
Ubi_reader UBIFS filesystem extraction tool https://github.com/onekey-

sec/ubi reader

Firmware-mod-kit

Collection of scripts for firmware
extraction and reconstruction

https://github.com/rampageX/firmware

-mod-kit/wiki

IDA

Disassembler

https://hex-rays.com/

Ghidra

Disassembler

https://ghidra-sre.org/

RT809H Programmer
software

Control RT809H Programmer (dump /
write memory chips)

http://doc.ifix.net.cn/@rt809/ENGLISH.
html

QEMU

Firmware emulation

https://www.gemu.org/

Firmadyne

Firmware emulation based on QEMU

https://github.com/firmadyne/firmadyn
e

Hardware Hacking — Methodology & Tips

10/ 103

https://www.picotech.com/downloads
https://www.saleae.com/downloads/
https://openocd.org/
https://www.flashrom.org/
https://github.com/ReFirmLabs/binwalk
https://github.com/devttys0/baudrate
https://github.com/firefart/UARTBruteForcer
https://github.com/firefart/UARTBruteForcer
https://github.com/gmbnomis/uboot-mdb-dump
https://github.com/gmbnomis/uboot-mdb-dump
https://github.com/cyphunk/JTAGenum
https://github.com/SySS-Research/nand-dump-tools
https://github.com/SySS-Research/nand-dump-tools
https://github.com/plougher/squashfs-tools
https://github.com/plougher/squashfs-tools
https://github.com/onekey-sec/jefferson/
https://github.com/onekey-sec/jefferson/
https://github.com/whataday/unyaffs
https://github.com/onekey-sec/ubi_reader
https://github.com/onekey-sec/ubi_reader
https://github.com/rampageX/firmware-mod-kit/wiki
https://github.com/rampageX/firmware-mod-kit/wiki
https://hex-rays.com/
https://ghidra-sre.org/
http://doc.ifix.net.cn/@rt809/ENGLISH.html
http://doc.ifix.net.cn/@rt809/ENGLISH.html
https://www.qemu.org/
https://github.com/firmadyne/firmadyne
https://github.com/firmadyne/firmadyne

Fi -analysis- https://github. ttify/fi -
irmware-analysis Firmware emulation based on QEMU ps://github.com/attify/firmware

toolkit analysis-toolkit

Bare-metal firmware analysis and

loading address identification https://github.com/quarkslab/binbloom

Binbloom

https://github.com/attify/firmware-analysis-toolkit
https://github.com/attify/firmware-analysis-toolkit
https://github.com/quarkslab/binbloom

2.Electronics 101
2.1. Recognize Main Electronic Components

— All power-related components can be quickly identified, but are not really interesting as potential
targets for us:
o Resistors: They reduce voltage and current by dissipating power in the form of heat.
Characterized by its resistance (in Ohms). Two main different forms:
- Normal resistor, mounted through holes via two legs (on left).
— SMD resistor, smaller, mounted on the surface of PCB (on right). These are the most
frequent on modern embedded devices where space must be optimized.

Through Hole

'Ol""_._
—

-

Surface Mount

agnagn

R37 R36
a“

o Capacitors: They hold energy in the form of an electric charge. Inside them, there are two
oppositely charged plates (hold electric charge when connected to a power source). They can
also act as a filter, reducing electrical noise affecting other chips on the device, separating AC
and DC components...

o Transistors: They act both as signal switches and/or amplifiers:
— Amplifier role = They produce bigger output current from small input (i.e., amplify) (e.g.,
microphone connected to loudspeakers).
— Switch role = They control the current by turning it on or off based on the applied
voltage at their control terminal.

Hardware Hacking — Methodology & Tips 12 /103

o Inductors = They store energy in a magnetic field when the current flows through them. An

inductor typically consists of an insulated wire wound into a coil.

=
=

AN

W\
_ An

N

Integrated Circuit (IC) microchips: Miniaturized electronic circuit that integrate multiple components
onto a single chip. The components and the complexity of the chip depends on its features.

o Microcontroller Unit (MCU): It is often the central component on a PCB, and it can be seen as
the “brain” of the electronic circuit, responsible for processing information, controlling various
functions, and interacting with other components on the PCB. MCU usually combines on a single
chip the following components:

CPU (microprocessor),

Volatile memory (RAM),

Non-volatile memory (ROM),

Input/output peripherals (e.g., GPIO, UART...),
Timers,

Communication interfaces.

'iéitiﬁéun‘m;sﬂﬁi ‘

o]
F

o System-on-Chip (SoC): This IC is similar to MCU but even more complex since it embeds a
broader range of components, such as GPU, network controllers (e.g. Ethernel controller),
hardware-based security/cryptographic module, BlueTooth, real-time clock, etc. Therefore, SoC
are often found in more complex system than simple MCU. From a hacker’s perspective, MCU

or SoC must be clearly identified since it consistutes the center of the embedded device, and it
is communicating with all other main components on the board, that can be potential targets.

o Network Controllers: They are IC chip dedicated to manage network connectivity in the device.
A common example is an Ethernet controller that acts as a bridge between the device and the
network, allowing for the transmission and reception of data packets (example below).

o e o Tt e et b
— -

wie ;::’wﬁxxn
o

YTy
<

e

‘:“'v'\"m o)
_33 W e RN
o Trusted Platform Module (TPM): It provides hardware-based security features. It stores

cryptographic keys, performs secure cryptographic operations, and includes features to
enhance the security of a computing platform.

Tips:

Every Integrated Circuit (IC) chips on the PCB should be clearly identified (cf. 3.2. Chips Identification) in order
to have an overview of the hardware capabilities of the devices (e.g., the presence of a TPM on a board is
likely to indicate the use of cryptography for security features such as Secure Boot).

Memory Chips: There is a wide variety of memory chips. Taking a high-level perspective, there exist two
primary categories:

o Volatile Memory (RAM): content is flushed when the power is turned off or disrupted,
o Non-Volatile Memory (ROM and Hybrid): it retains data across power cycles.

2.2. Connectors and Cables
— Pin headers: They are commonly used to give access to some features provided by the PCB. In particular,
they are used for debug interfaces (cf. 3.3. Debug Interfaces Candidates):
o SIL (Single In-Line) headers = single row of pins in a straight line.

o DIL (Dual In-Line) headers = two parallel rows of pins.

— U.FL connectors: These are miniature coaxial radio-frequency connectors commonly used in electronic
devices with wireless communication features:
o Female component (port) on PCB:

Hardware Hacking — Methodology & Tips 15/103

o Male component (cable) connected to the PCB:

— Flexible PCB connectors: These kinds of connectors are very fragile by nature, be very cautious when
releasing them!

2.3. Memory Types
2.3.1. Volatile Memory

RAM (Random Access Memory) holds data for only as long as it received power supply:

— DRAM (Dynamic RAM): It stores each bit of data in an individual capacitor.
— SRAM (Static RAM): It offers faster access time and lower latency than DRAM, but it consumes more
power and it is more expensive.

RAM can be found in various configurations: embedded directly within a MCU/SoC, integrated as a dedicated
chip (cf. left picture below), or utilized as an external component attached to the PCB (cf. right picture below),
resembling the setup of RAM on a computer motherboard.

Flreetectttoovhonipiotesreninsarl

Tbbedbbtdnedniaintabiohunatateny B bbbl
USEPRARALARIANRTRT it 7o) DINBEONY B x Lionr s

Hardware Hacking — Methodology & Tips 16 /103

2.3.2. Non-Volatile Memory

There are several types of non-volatile memories:

- ROM (Read Only Memory):
o PROM (Programmable ROM): Data stored on PROM cannot be modified once written.
o EPROM (Erasable Programmable ROM): Data stored on EPROM can be erased and
reprogrammed multiple times (warning: do not confuse with EEPROM). It can be erased using
ultraviolet (UV) ray.

— Hybrid Memory (Read/Write):

o NVRAM (Non-Volatile Random Access Memory): Typically uses volatile memory technology
with a backup power source (e.g., battery) to maintain data integrity during power loss.

o EEPROM (Electrically Erasable Programmable ROM) = Read and write can be done on small
blocks of bytes. It is commonly used in systems where small amounts of data need to be updated
or modified infrequently. It has a limited number of write cycles.

o Flash Memory = Read and write can be done on larger blocks compared to EEPROM, so Flash is
usually not as flexible for small/targeted updates as EEPROM, but it is faster. It also has a limited
number of write cycles, it is usually less endurant (i.e., can endure fewer cycles) than EEPROM.
There are subtypes of Flash memories, depending on their technical implementation:

= NAND Flash = This is the most prevalent type, known for its high-density storage with
fast read/write access.

= NOR Flash = It has lower storage density than NAND Flash, but has faster read access
speed.

Note: Typical contents of non-volatile memory
— Flash memory is often used to store: firmware, bootloader, applications’ data.
— EEPROM s likely to be used to store: configuration settings, system information (e.g., serial numbers,
device identifiers, manufacturing information, etc.), user preferences, small logs, etc. It might also be
used to store firmware, but only if it is relatively small (on simple embedded devices).

Furthermore, non-volatile memory chips can also be distinguished by the communication protocol they use for
input/output (1/0):

— Serial protocol: most commonly SPI (cf. 6. SPI Memory) or I*C,
— Parallel protocol: for example, ONFI (cf. 7. Parallel EEPROM/Flash).

Note that EEPROM, NAND Flash and NOR Flash can use either serial protocol or parallel protocol; thus it is
needed to refer to their datasheet to identify their communication protocol.

2.4. Chip Package Types
Integrated circuits (ICs), or chips, come in various package types, and the choice of a package depends on
factors such as the application, required functionality, size constraints, and thermal considerations. Here are
the most common package types:

Types of Packages

Insertion
Mounting

SIP | ZIP | DIP

Surface
Mounting

Note:

N m .

U_S0IC8_150_50mil U_SOP8_209_50mil

SOP and SOIC package types are very similar, as shown in the next
diagram. SOP has a larger footprint than SOIC, but what is important is
that they both have the same pin spacing. That is why, it is possible to
use the same chip clips for both packages (cf. 6.3.2.1. Connection to chip
using chip clip).

Below are some examples seen on real devices:

Chip Carrier

Plastic Leaded Quad Flatpack No-Legs Shrink Small Outline Package

QFN
2 2 SOT
Small Outline
e Transistor
Thin Small Outline Package BGA : fma"tg;gine L
Ball Grid Array ntegrated Circul

Quad Flat Package

Flash memory with 8-pin SOP package (very common

package for serial Flash):

— NAND Flash memory with TSOP-48 package (very common package for parallel NAND Flash):

2.5. Communication Modes

There are two modes of communications between IC components:

- Serial communications: data is sent/received one bit at a time over a single data line.
— Parallel communications: multiple bits are sent/received simultaneously over multiple data lines.

On embedded devices, serial communications between components are often preferred due to low physical
space (indeed parallel communications require much more data lines, and therefore more complex PCB).

Serial communications protocols examples:

— UART (Universal Asynchronous Receiver-Transmitter) (cf. 4.)
- RS-232

- USB

— SPI (Serial Peripheral Interface) (cf. 6.)

- I2C (Inter-Integrated Circuit)

- CAN

— Ethernet

— PCI Express

Parallel communications protocols examples:

— ONFI (Open NAND Flash Interface): Parallel communication that is often used for communication
between NAND Flash memory and microcontroller (cf. 7.)

— PCl (Peripheral Component Interconnect): PCl uses a parallel bus, but most recent implementations like
PCl Express (PCle) have transitioned to a serial communication protocol.

Hardware Hacking — Methodology & Tips 19/103

3.

Information Gathering

The first step of a hardware security assessment consists in gathering as much information as possible about the
target device.

Tips:

Take note of all the information gathered.

Download all documentation and datasheets available for the target device and the identified
components.

Take lots of pictures of everything:

Untouched device (every label, every screw, every port, every interface, etc.),

Disassembled device,

Both sides of PCB,

Zoom on every chip, every label, every connector, etc.

Remove PCB stickers and check what they hide.

O O O O O

3.1. Reconnaissance

This first phase consists in gathering all the publicly available information about the device:

Look for the official website.

Search for official documentation, based on the device’s reference number.

Search for changelog / version history.

Search for previous research/hacking already done on the target device (if available). For instance, this
is common with router devices thanks to OpenWrt project (https://openwrt.org).

(&} (OMN=}] openwrt.org

=
*)OpenWrt

Opening the case

Note: This will void your warranty!

The device can be opened easily by unscrewing the two tiny screws on the back side. You can then slide off the top cover (tow|

See Serial below for a picture of the PCB.

Serial

The through holes are filled with lead-free solder which melts at 375 °C. They can also be drilled using a 0.9mm bit. With a ste,
keeping male headers pushed to the filled holes (but for stability reasons this obviously isn't recommended.

See the red rectangle on the below photograph for the location of the unpopulated UART header.

Pin layout:

« J1.1: VCC, 3.3V (square pad)
* J1.2: RX (computer — gs108t)
* J1.3: TX (gs108t — computer)
* J1.4:GND

Serial connection parameters for NETGEAR GS108T v3 115200, 8N1

See serial port for general information about serial port, serial port cable, etc

JTAG

No JTAG header is present on the PCB

https://openwrt.org/

— On devices with wireless communication capabilities, get the FCCID (Federal Communications
Commission Identification) which is a unique identifier assigned by FCC in the US to track and manage
electronic devices that emit radiofrequency (RF) signals. It is usually easily accessible from the back of
the device. Then, perform an FCCID lookup via https://fccid.io/. It can give lots of interesting technical
information about the device, including internal photos.

NETGEAR

CID PY3

300
ftar

12300212

2 12300212, PY3I123002) Document t Type

Labsl Location

— Check if the device’s firmware can be downloaded from the official website or from anywhere else on
the Internet.

— Also, look for similar products, especially if only a few information is available for the target device.

— Do not forget to perform research about the target device on Twitter/X and Reddit where there is a
quite large community of hardware hackers.

3.2. Chips ldentification

In this second step, the device must be open in order to access the PCB. The goal is now to identify most of the
IC chips on the PCB, and in particular the memory chips and MCU/SoC. To achieve this, read the reference
numbers written on the chips (if they have not been removed!), and search for their datasheets on:

— https://datasheetspdf.com/

- https://www.alldatasheet.com/

- https://www.datasheets360.com/

- Google: filetype:pdf <reference number>

— https://alibaba.com: most chips are sold here and the products’ descriptions might contain datasheet

or at least some useful technical information.

Tips:
- Play with orientation and light, combined with camera zooms, to be able to read reference numbers
/ codes written on chips. It is usually easier to read small reference numbers from high-quality
pictures, taken under different lights and angles. Image manipulation software can also be useful
(play with contrast and exposition for example).

https://fccid.io/
https://datasheetspdf.com/
https://www.alldatasheet.com/
https://www.datasheets360.com/
https://alibaba.com/

— Do not forget about the back of PCB, since both sides of PCB can have components.

Warning:
— Before disassembling the device, make pictures of the locations of screws, and keep track of which
screws come from where.
— Some screws can be hidden under some stickers, make sure to check and avoid forcing too much.
— When removing the PCB, be careful of cables and connectors (especially the ones that are hidden, on
the back of the PCB). Again, make pictures of every cable and connectors before releasing them.
The goal is to avoid breaking something when disassembling the device and extracting the PCB, and also to
be able to reassemble everything.

Manufacturer logos are also often printed on the chips. It can be useful to make sure we are looking at the right
chip when searching for datasheet. Here is a non-exhaustive list:

A=A Abracon Z FEricsson L LaticeSemi. | © Omnirel B soidstateinc.
& | A® e it retcosom. |(J) ONSomiconductor| §F SoldSute
[D AdwncedlLineer| £ Eairchita L Laticosemi. | D Optek & Solomon Systech
KL flvencedPoner| @5 Forant @ ‘osem.) PeicomSem. |(§7 STMicroelectronics
i Agient & Foeectonics | LT LnearToch. | (@ Plssey FE sunuen
A Aiencesem. | - Freescale B4 Litetuse p . B smerk
A W ems | @) Fuitsu O Lucent E [ovwors |95 Tawansem.
SEZ Aphasem. | E Futsu Bl Msystems |73 PowerTrends | & TDKSemi.
P Y C GECPlessey | WA Macronix Q QuaitySemi. |e=— TE Connectivity
Arcan @ ceneralElectic |mxac Macronix B uickiogic W Teccor
Y Anedgics ﬁ; GoneralSemi | 4 MarvelSemi. |=" "> RabbitSem. | Y Teccor
AnslogDevices| > GeneraiSemi | A, Matsushita § Remion ¥¥ TeiCom Semi.
u Analog Devices| @ Gennum @ Matsushita SZ Realtek ¢ Teledyne
(&) Aes 7 Gennum @ Maim 5 Recton N e
Q% Astec 5 Goud E R Reiance f.\ Thomson
B Benchmarq @ Hanis 8L Micro Linear =% Renesas R Toko America
H @D Hamis R\ Microchip #N Rociwel o Tomx
S o erigtPower | @) Hitach < Micronas Q® samsng T Toshba
BurBrown | ## Holtek M Micronix SK sanken &= Toshiba
() cataystsemi. | A Hyundei O Mcrosemicop.| & Senyo / Trident
Ml cotstsom. |« ryuncai & McrosomiCop.| Ay SekoEpson | & Tipath
€ conmas @ cwors ® v ® Seikoinstuments| (@) Triquint Semi.
C coms 2 jcube A Mitsubishi £ Semiton T Tsenglabs
=D cmslogc | [[feowed | gg MonoC o | @ Semiton @ TundasSem.
ey M s | @) [ooeed lmes MosTechnoogy | &§ semivonic ® w
C coitronics . Degeted |2~ Mossicsemi. | BI Semtech 1] unirode
@ Conexant @ oo | D mesevmic | Z£ sos L unitrode
@ CP.Care O impalatinesr | (A Mostek $% shindegen ¥ Vantis
€2 Cullc. @ Infineon M) Motorola $§ Siomens VW visic
Cygnal (D inmos O Mulerd 4,5 SieraSemi ® wsiTech.
3 Oypress i e & MRen 5 Ssignetics O vsiren
& Oypress IoR pemaional | 5] MiRem €& siicontabs | (L W Winbond
g Deowoo i intersil IS Netoneisomi. | 4 JhconDor0e | N xcor
(B Datessom. | 4g Krowes Z1 NetonaiSemi. | @ SiiconSystems | T i
D Datohtesi | @ Ko & National Semi. siiconSystems | %4 Ziog
J\ EctcReicon | A LambdaElect | @ Nordicsem. | JF sifconx Z ziog
FF EMMenn L Leticesem. |ES] Nvida S simisk N ziog

Tips:

If you cannot find datasheet for the exact reference number, try to search for “fragments” of the chip
number. For example, instead of searching for IT8786E-I, search for IT8786, and so on. Some digits can
just indicate unimportant variations of the same chip. Or it might also allow you to find datasheets for
components from the same family.

Example of chip identification:

1. We want to identify the following IC chip on a PCB. From a first view, we can already see that it is a chip
with a Quad Flat Package (QFP), i.e., a thin chip with many small pins on all four sides. This is a typical
form factor for microcontroller (MCU).

“
J

L) r,z(0174 ‘

'q o tee

.
)
[
(o a]
(o)
X

L
8|y

5*“‘1

af“

l"“ig -

2. If we zoom in, we can read the reference written on the chip = iTE IT8786E-1I
3. Research on datasheets websites does not report results for this exact reference number, but Google
search gives an interesting result:

GOOgIe IT8786E filetype pdf

Images Shopping Vidéos Actualités Livres Finance

5. CONFIDENTIAL. Page 7
1. Features

4. This PDF file is the datasheet (i.e., the technical documentation) of the chip we are looking for. At the
beginning of the document, the page “Features” is interesting because it gives an overview of all the
features supported by this chip. At first glance, we can see that it supports several UARTs channels,
general-purpose Input/Output channels (GP10), etc.

[
ITER L% Features

1. Features

B Low Pin Count Interface - Enhanced digital data separator
- Complies with Intel Low Pin Count Interface - 3-Mode drives supported
Specification Rev. 1.1 - Supports automatic write protection via
- Supports LDRQ#, SERIRQ protocols software

= Supports PCl PME# Interfaces
® Keyboard Controller
- 8042 compatible for PS/2 keyboard and mouse
- Hardware KBC
- GateA20 and Keyboard reset output
- Supports multiple keyboard power-on events
(Any keys, 2-5 sequential keys, 1-3
simultaneous keys)
- Supports mouse double-click and/or mouse
move power on events

B ACPI & LANDesk Compliant
- ACPI V. 2.0 compliant
- Register sets compatible with “Plug and Play
ISA Specification V. 1.0a”
- LANDesk 3.X compliant
- Supports 12 logical devices

® Enhanced Hardware Monitor
- Built-in 8-bit Analog to Digital Converter .
- 3 thermal inputs from either remote thermal
resistor or thermal diode or diode-connected
transistor, the temperature sensor of the
current mode
- 8 voltage monitor inputs (VBAT measured

40 General Purpose /O Pins

- Input mode supports either switch de-bounce
or programmable external IRQ input routing

- Qutput mode supports 2 sets of programmable
LED blinking periods

-8 GPIO Pins in the same group

internally)
- 1 chassis open detection input with low power - :

Flip-Flop dual-powered by battery or VCCH 7%?]33'{5?:“:‘:“‘:; gll,c‘,ﬁ':
- Watch Dog comparison of all monitored values ~ Supports HW lock

- SSTIPECI IIF support

- HAW Smart fan control ® Watch Dog Timer

- Time resolution 1 minute or 1 second,
maximum 65535 minutes or 65535 seconds
- Output to KRST# and PWROK when expired

B Fan Speed Controller
- Provides fan on-off and PWM control
- Supperts 3 programmable Pulse Width
Modulation (PWM) outputs .
- 128 steps of PWM modes
- Monitors 3 fan tachometer inputs

ITE’s Innovative Automatic Power-failure
Resume and Power Button De-bounce

® Six 16C550 UARTs B VCCH and Vbat Supported

- Supports six standard Serial Ports

_ Supports IrDA 1.0/ASKIR protocols W Singls 24143 MHz Clock Input

- Supports CIR B Built-in 32.768 kHz Oscillator
B |EEE 1284 Parallel Port

- Standard mode: Bi-directional SPP compliant B +5V/3.3V Power Supply

- Enhanced mode: EPP V. 1.7 and V. 1.9

compliant B Supports RS485 Automatic Direction

_ High-speed mode: ECP, IEEE 1284 compliant Gontrol
- Back-drive current reduction .
= Printer power-on damage reduction B Supports Wide Operation Temperature
_ Supports POST (Power-On Self Test) Data Range: -40 T-100C
Port
® 128-pin QFP [128-pin LQFP
B Floppy Disk Controller
- Supports two 360K/ 720K/ 1.2M/ 1.44M/ 2.88M

floppy disk drives
www.ite.com.tw 1 IT8T83F/E V0.5
ITPM-PN-2010083
Specfications subject to Change without Notice 6/25/2010

5. It confirms that this chip is a MCU. The chip can also be found on online electronics shops:

Welcome to Veswin!

Veswin Electronics |
Allin-one curement Platform

Popular searches: MMBT2222A PSKE15CA LM2575T-ADJ
Toduct Categories Home Line Card Request for Quote Technical News I

Home > Processors / Microcentrollers > IT8786E-

IT8786E-I ITE QFP-128 Processors / Microcontrollers

IT8786E-

Part Number IT8786E-I
Brand |TE 1+ 1004
Product Categories Processors / Microcontrollers

Datasheet [4 Datasheet

Package QFP-128

Add to favorite: ¥7 o

Images are for reference. See Product

Specification

Hardware Hacking — Methodology & Tips 24 /103

After identifying all the main components of a device, a table looking as follows for every identified component
should be produced in the final report:

Description Manufacturer Reference Technical Specifications
Microcontroller iTE IT8786E-I - 64 GPIO pins
(McCuU) 2028-BXS

- 3.3V power suppl
S18HTA : A

- Datasheet:
https://github.com/huchanghuil123/ITE-
SuperlO/blob/master/IT8786E-l B V0.2.pdf

Tips:

If an electromagnetic/radio frequency shield (EM/RF shield) is present on the PCB, remember to remove it
to unveil what lies beneath. Indeed, interesting ICs often require such shielding. Here is an example on a
Netgear router where MCU and RAM are present under such a shield:

— Before shield removal:

— After shield removal:

In a datasheet, the most important sections from a hacker’s perspective are:

- Features/General description at the beginning: it gives an overview of the features supported by the
chip.

- Block diagram: it shows how the chip can interface with other components.

— Pinout diagram: graphical representation that illustrates the layout and assignment of pins.

Hardware Hacking — Methodology & Tips 25/103

https://github.com/huchanghui123/ITE-SuperIO/blob/master/IT8786E-I_B_V0.2.pdf
https://github.com/huchanghui123/ITE-SuperIO/blob/master/IT8786E-I_B_V0.2.pdf

- Memory mapping (for MCU/SoC): it shows how the memory ranges are assigned in MCU/SoC. It is
particularly useful when extracting firmware from mapped memory (cf. 5.4. Firmware Extraction using
JTAG) or when reversing bare-metal firmware (cf. 8.4. Loading Bare-Metal Firmware in IDA).

3.3. Debug Interfaces Candidates

After the identification of chips, it is important to identify the debug interfaces available on the PCB.

Debug interfaces are indeed often available on PCB as single or multiple rows of pads or pins. Therefore, they
should all be inspected.

Examples:

— PCB of a Netgear router:
o Inred box: row of 4 pads that is a good candidate for UART (cf. 4. UART).
o Inyellow box: double row of 14 pads that is a possible candidate for JTAG (cf. 5. JTAG).

30vEL L
S1xNp0drH Ul e

3 I

— PCB of a PaloAlto network device:
o Arow of 9 pins that could be either UART or JTAG.

o A double row of 10 pins that is another candidate (more likely JTAG).

Hardware Hacking — Methodology & Tips 26 /103

Notes: Disabled debug interfaces

— Some debug interfaces can be present on a PCB but disabled. In such case, it often means that they
are used on development boards, but disabled in production. This is often the case for JTAG.

- Sometimes, however, there are some undocumented tricks to re-enable such disabled debug
interface, like connecting two points on the PCB. According to
https://www.makemehack.com/2020/03/how-to-find-the-jtag-interface.html, here are some tricks
that might work to re-enable JTAG (but they all require some strong electronic skills!):

o It might be missing the pull-up resistorin the TRST pin, in this way the JTAG interface is always
in a reset state and it will not function. This issue can be solved by putting a resistor of about
300 Ohm or 1 KOhm between this pin and Vcc.

o Usually between each JTAG connector pin and the related MCU/SoC pin, there is a low value
resistor that can be missing during mass production and it is included only in the prototype
boards. This issue can be solved by putting back this resistor or making a direct connection
short-circuiting the resistor pads.

Tips:
If there are the following labels next to the pins/pads, we are lucky since it gives a clear indication about the
type of debug interface we are facing (and possibly even about the pinout):

~ UART, CONSOLE, RX, TX, DBG_TXD, DBG_RXD ..-> Indicates UART

~ JTAG, TDO, TDO, TMS, TCK, TRST .. - Indicates JTAG

To gain a comprehensive understanding of the various potential form factors for debug interfaces, below are
several additional examples.

— Examples of UART interfaces: Most common configuration is 4-pin or 3-pin.

NS b |
C ;

https://www.makemehack.com/2020/03/how-to-find-the-jtag-interface.html

5
_T%0
AXO

=

=
N\

N

T (e
T

Note:

UART can also be found on interfaces with many more pins/pads (but it is more exotic):

+3.27v

In some rare cases, it is also possible to have a UART available directly from a port on the device. In
such a configuration, it is likely to be a well known and documented administration debug interface.
Here is an example on a network device with a port labelled AUX along with the Baud rate (115200)
and the UART packet configuration (standard 8N1). This one is designed to be used with a RJ45-to-

USB cable:

Examples of JTAG interfaces: Most common configurations are one row of 5/6 pins or double row of

10, 12, 14 or 20 pins.

® 90000 00
P 90906000
®0 00000
990909 000

3.4. Annotated Overview of PCB

All the information collected during previous steps should be visually summarized on an annotated picture of
the PCB. This picture should include all the identified components and should be updated during the security

assessment to confirm the presence of any debug interfaces on the device, or if new components are identified
later on.

Examples:

— PCB of a Netgear router:

mom

IET,

309¢1 .
41 xXNv0dvH - Ul

Ethernerroris»
WIF]

ONIors

Hardware Hacking — Methodology & Tips 29/103

— PCB of a PaloAlto network device:
o Front side view:

tinrEthernet
Jransceivers

bifE.
affer

LHWC10L 0G0 NS

PRI

y - RAM DDR3

Hardware Hacking — Methodology & Tips 30/103

o Back side view:

NAND Flash’ /i

; ;', T
\mpe (D T - CTTTTITED -

3.9. Attack Surface Mapping

Finally, before going straight into hacking, it is a good idea to create a comprehensive map of the device’s attack
surface. It is important to keep in mind that the attack surface extends beyond the realm of hardware
components. Indeed, IoT devices often have various interactions with end users and other devices through
different means. Understanding these interactions, which involve different communication methods, is key to
grasping the full scope of potential vulnerabilities.

Below is a non-exhaustive list of possible elements to put in such attack surface map (which must be adapted to
the target device, of course):

— Hardware:
o UART
JTAG
Non-volatile memory chips (EEPROM / Flash)
USB ports
Ethernet ports
All ports
External storage (e.g., SD cards, M2 SSD, etc.)

O O O O O O

- Software:
o Firmware
o Web-based dashboard
o Mobile application to control the device
o Command-line interface (CLI) available through SSH or Telnet

— Network services:
o Any open port (TCP/UDP) on the device, on every available network interface.

— Network communications:

o HTTP(s)
o MAQTT (Message Queuing Telemetry Transport)

Hardware Hacking — Methodology & Tips 31/103

o CoAP (Constrained Application Protocol)

— Wireless communications:
o Wi-Fi

Cellular

Bluetooth (BLE)

ZigBee

LoRa

Wave

6LoWPAN

O O O O O O

3.6. Ways to Get Access to Firmware

Getting access to the target device’s firmware is one of the goals of a hardware hacking assessment since it will
allow you to go from full black box to grey box testing. A firmware may contain filesystems, applications, binary
files, and sensitive data such as encryption/decryption keys, certificates, passwords, etc. (in the special case of
a bare-metal firmware, it is only a single binary and the sensitive data can be embedded inside).

Therefore, getting the firmware will make reverse engineering of the various components possible (cf. 8.
Firmware Analysis and Reverse Engineering).

There are several ways to get our hands on a device’s firmware, some of them being much easier than others:

— Download it from the official website: if you are lucky enough, the vendor’s website might directly
allow to download the latest version of the firmware.

— Download it from unofficial sources: sometimes other hackers have already extracted the firmware
from the same device, and they made it available online. Of course, it requires more vigilance to be sure
it is not a malicious/backdoored version.

- Sniff network traffic during firmware upgrade: it might be possible to perform a firmware upgrade from
the device, typically from a user interface provided for device administration (e.g., web dashboard). In
such a case, try to sniff the traffic using Wireshark and rebuild the file from network trace (. pcap). If
the traffic is encrypted (HTTPS), perform a Man-in-the-Middle attack (bettercap is a tool of choice)
and serve a fake certificate, lots of embedded devices will not complain.

- Soft extraction from the device: If a high-privileged shell access to the device is available (e.g., through
SSH, Telnet, etc.), it is possible to simply copy the mounted filesystems directly from the device. It is also
possible to dump the content of Flash memory chips as raw files by copying the files /dev/mtdX or
/dev/mtdblockX (e.g., dd if=/dev/mtdl bs=512K | nc 192.168.0.1 9999). Whilst these will
need unpacking to extract the files from them, they will also contain other areas of the Flash that you
would have missed if you just copied the files off. This is, however, rather uncommon to have such
privileged access out-of-the-box, and usually only limited CLI is available, unless a special debug
service/interface is available somewhere.

Note: Encrypted Firmware

It is possible that the firmware file you get from downloading from the official website, or from sniffing
network during upgrade is encrypted. It is indeed a common practice by loT vendors to encrypt it and to
decrypt it during the install/upgrade process. In such a case, it will be necessary to find a way to identify the
algorithm and the key (probably stored on one non-versatile memory chip on the device), or to dump the
firmware using another technique.

— Dump it from memory:

O

Indirectly by reading mapped memory from UART: it might be possible to find ways to make a
full dump of the firmware from UART, for example when it gives access to Bootloader (cf. 4.5.
Typical Examples of UART Exploitations).

Indirectly by reading mapped memory from JTAG: if available, JTAG might also give access to
the memory chips, including the one storing the firmware (cf. 5.4. Typical Examples of JTAG
Exploitations).

Directly by reading memory from the memory chip itself: if the firmware is stored on an
external memory chip, it can be possible to dump its content using several techniques,
depending on the chip type (cf. 6. SP Memory and 7. Parallel EEPROM/Flash). Note that not all
devices store their firmware on a separate memory chip, indeed some devices use the internal
Flash memory embedded into their MCU/SoC to store it (most frequent for bare-metal
firmwares). In this case, extraction of the firmware using this technique will not be possible.
Nevertheless, most of the Linux-based firmwares are stored on a separate EEPROM/Flash which
make them prone to extraction.

Note: Types of firmwares
There are three main types of firmwares you can encounter:
— Bare-Metal firmware:

o
(@]

(@]
(@]

— Linux-

(@]
(@]
(@]

— Real-Time OS (RTOS) based firmware:

O
o

Runs directly on the hardware without an operating system.
It has direct control over the hardware resources without any intermediary.
Typically written in low-level languages (Assembly, C) and tailored for specific hardware.
Small size.
Often directly stored on the memory embedded inside the MCU/SoC.

based firmware:
Runs on top of Linux.
Interacts with hardware components through the Linux kernel, using specific drivers.
Features provided by the device can be written using high-level languages (e.g., web
dashboard, administration console over SSH, etc.).
Due to resource constraints on embedded devices, OS size is optimized with only the
required components. BusyBox is often used to reduce the size, with a limited set of utilities
that are needed for the system.

Use a Real-Time operating system (RTOS) for task scheduling and real-time requirements.
Common for devices where precise timing and responsiveness are crucial (e.g., automobile,
aircraft, medical, industrial automation, ...).

Examples of RTOS: FreeRTOS, VxWorks, QNX, CMSIS-RTOS, ThreadX, ...

Note: Duplicated firmwares

Some devices are storing two versions of the firmware. This is often a failsafe mechanism used in case of a
problem occurring with the first one, for example in case of a bad upgrade or a failed sector of the Flash chip.
It can also be used to restore the device in its initial state when doing a factory reset.

The second Firmware can be a “limited” version that is only aimed to allow the installation of a new fully
working Firmware.

Below is an illustration where two partitions, named IMG1 and IMG2, have been discovered after full memory
dump. Each partition is storing a copy of the same firmware, each containing the same root filesystem.

boo tme

bzImage

oldconfaig

rootfs

4. UART
4.1. UART Protocol

UART (Universal Asynchronous Receiver/Transmitter) is a serial communication (i.e., using one single bus for
emission and one for reception) allowing two different components on a device to talk to each other without

the requirement of a clock (i.e., asynchronous).

UART is also commonly used to give an access to the device’s internal via cable. It can give access to:

— Bootloader (typically U-Boot),
— Password-protected or unauthenticated (root) shell (giving access to the device’s Firmware),

- restricted command-line interface (CLI),
- Etc.

UART communication between two devices is done from Tx pin (stands for “Transmission”) to Rx pin (stands
for “Reception”).

RX RX
UART 1 X X UART 2
GND GND

Data is split into packets of 8-bit (=1 byte), with optional start bit, parity bit and stop bit as follows:

Start bit:usually 0,

Message (data): 8-bit length,

Parity bit: Usually not used by devices (otherwise it is used for error/corruption checking),
Stop bit: Usually 1.

Start bit Word data Parity Stop bit
logic 0 | bit logic1

| | (optnad |

DO D1 D2 D3 D4 D5 D6 D7 FB m

Start by Incoming data sampled at the bit-pulse center Sample
detecting stop bit
transition

from logic 1

to logic 0

The most common configuration for UART data packet is 8N1, i.e., 8—bit data / no parity bit / start
bit = 0 / stop bit = 1.

When UART line is in idle state (i.e., when no data is transmitted/received), the line is staying at logical value 1
(logical high).

4.2. UART Pinout Identification

UART pins are:

— Tx (Transmit) = Transmits data from the device to other end.

- Rx (Receive) = Receive data from the other end to the device.

— GND (Ground) = Ground reference pin.

- Vcc (Voltage) = Usually either 3.3 V or 5 V for electronic devices.

Note:

GND and Vcc pins are actually optional, and it is possible to find interfaces with only two pins Tx and Rx on
some boards. In such case, the GND from the adapter device we want to use to connect to UART (e.g., UART
to USB adapter FT232 or Bus Pirate) will need to be connected to another Ground point somewhere else on
the PCB (use multimeter in “continuity test” mode to find one easily).

In cases where UART pin labels are not explicitly marked on the PCB, the following methodology can be
employed to identify the UART pinouts:

1. On the multimeter, connect the black probe to the COM jack port, and the red probe to the VQ jack
port.

2. Find the GND pin: Make sure the device is powered OFF. Use a multimeter in “continuity test” mode
with the black probe on a known Ground, that is to say an area that has a direct conductive path to earth
(e.g., a grounded metallic surface on the PCB, a screw, etc.) and the red probe on each pin/pad to test.
When the multimeter emits a “beep”, it means that there is a continuity between the tested pin and the
Ground, and therefore the tested pin corresponds to GND.

3. Find the Vcc pin: Put the multimeter in Voltmeter mode (DC) with the black probe on a known Ground
(or the previously found GND pin) and the red probe on one pin/pad. Power the device ON and keep the
probes on the pin/pad. If the measure indicates a constant voltage of either 3.3 Vor 5 V (without any

fluctuation), it means that it corresponds to Vcc. Otherwise, power the device OFF, and repeat the
process for every other port until you identify Vcc.

: W W el i

SR rE S

AuALE -

woB | E : s I\ o=

™
T R . ' . —_ 0

4. Find the Tx pin: Reboot the device and repeat the previous process on every remaining pin/pad. If the
voltage fluctuates for a few seconds during boot, and then stabilizes at the Vcc value (either 3.3 V or
5 V), itis likely to correspond to Tx. This behaviour happens because, during boot-up, the device sends
serial data through that Tx port for debugging purposes (there are indeed usually a lot of boot logs data
sent when starting a device, as show in 4.5.1. Boot Logs Analysis). And once, it finishes booting, the
UART line goes idle; and in idle state, UART remains at logical 1 (logical high), which corresponds to the
Vcc value.

5. Find the Rx pin: On 4-pin configuration, the Rx pin is, of course, the last pin by process of elimination.
Otherwise, repeat the previous process but, this time, look for low voltage fluctuation.

Tips:

When 2 pins can be possibly either Tx or Rx, it is actually not a big deal if we do not manage to determine
which one is what at this step, because we can explore the two possibilities during the interaction with UART
(cf. 4.4) and check which configuration allows for readable data reception from UART.

Warning:
Switching cables for Tx and Rx is not a big deal, but confusing Vcc with GND, and connecting wires to them
incorrectly could lead to damaging and destroying the circuit !

Tips:

When performing such research for debug interface pinouts (not only for UART), it can be interesting to keep
notes of every measure in a table that can be reviewed later, and it can also be put into the final report. Here
is an example:

PIN R_GND (dev OFF) V (device ON) Notes
1 oo 3,3V Vcce
~80kQ 1,7-2,5V (fluctuations) Tx

2
3 ~12kQ 0-0,004V Rx
4 0Q (beep) (0)Y) GND

4.3. Baud Rate identification

Since UART is an asynchronous protocol, there is no requirement of a clock (no CLK), as a consequence the rate
at which data is transferred over the channel must be known. This rate is called Baud rate and refers to the
number of bits per second.

Common Baud rates for UART are:

- 9600

- 38400
- 19200
- 57600
- 115200

4.3.1. Baud Rate Identification using Logic Analyzer
A logic analyzer is an electronic instrument used for capturing and analyzing digital signals in a digital system. It
is basically a device that can be plugged onto multiple pins on the PCB we want to analyze. Using the software
Salae Logic Analyzer, it is possible to visualize the signal on the monitored pins during a period of time.
This software is available at https://www.saleae.com/downloads/.

Here is the methodology to use a Logic Analyzer to determine the Baud rate of UART:

1. While the device is powered OFF, connect one of the channels of the Logic Analyzer (CH*) to the Tx pin.
If you are not sure to have identified Tx and Rx correctly at previous steps, you can connect one channel
to each candidate.

A,-Delivery

Logic Analyzer
24 MHz,8 CH

2. Connect the Logic Analyzer’s GND pin to one GND pin on the device’s PCB, so they both share a common
ground.

3. Connect the Logic Analyzer to a USB port on your computer.

4. Start the Salae Logic Analyzer software by simply running the executable “Logic” in the
application’s directory (sudo ./Logic). In the interface, you can see several channels on the left pane,
each of which corresponds to one of the Logic Analyzer’s channel pins.

Start Simulation

https://www.saleae.com/downloads/

Warning:
Make sure that the device is powered OFF when connecting Logic Analyzer’s probes (or any other wires) to
avoid short-circuits that could damage (or even destroy) the device’s PCB and/or the Logic Analyzer.

5. Configure the Speed (Sample Rate) to be superior of equal to 50kS/s and the Duration to at least
20 seconds.

6. Click on “Start Simulation” to begin capturing the signals, and power ON the device at the same
time. Wait for the capture to finish.
7. When finished, you should see the signal for the Tx pin, as shown below:

8. The delta time corresponding to the transmission of 1-bit can be measured in the software. In the
example, this delta time for 1-bit is roughly equal to 8.33 us. Therefore the Baud rate is about 1/(8, 33
* 10"-6) = 120048. We can conclude that here the actual Baud rate is 115200, since it is the closest
value from common Baud rates.

| W 2,333 ps | 60.15 kHz B 16.62 ps

jor@hackbox: ~[pentest-toolsfhardware/baudrate

Fichier Actions Editer Vue Aide

18 (64-bit) @ jbr@hackbox: ..ware/baudrate ® jbr@hackbox: ~...2.18 (64-bit) @ jbr@t

Q= Capture 24 MHz, 120 M..

Tips:
It is possible to decrypt UART communication using Salae Logic Analyzer software when knowing the
Baud rate (it can also actually be done when it is not known using the feature “Use Autobaud” but it is prone
to error):
1. Click on the + beside “Analyzers” on the right pane. Select “Async Serial”. Choose the channel
on which you are reading the signal, and set the Bit Rate (Bits/s) to the identified Baud rate value

(115200 in the previous example). Other parameters can be left as default in most configurations
(correspond to the most common configuration for UART data packet which is 8N1, as seen in 4.1):

Analyzer Settings

Serial 4-'Channel4’ =

Bit Rate (Bits/s) | 115200 I

Use Autobaud
& Bits per Transfer (Standard) ~
1 Stop Bit (Standard) -
No Parity Bit (Standard)
Least Significant Bit Sent First (Standard) ~
Non Inverted (Standard) ~

Special Mode | None -

‘ Save Cancel

2. Visualize the decoded data next to the signal (in blue). Basically, each UART data packet is 8-bit, and
therefore corresponds to one ASCII character:

4.3.2. Baud Rate Identification using Bruteforce
This method is the easiest and fastest way to identify the Baud rate for UART:

1. Connect a UART-to-USB Serial adapter (or a multi-purpose device like Bus Pirate) to the UART interface
(cf. 4.4. Interaction with UART).

2. Boot the device and run the Python script https://github.com/devttysO/baudrate. It will simply loop
around all the most common Baud rates until it receives readable data, indicating that the currently
used Baud rate is correct. Here is an example:

rootihackbox:/home/jbr/pentest-tools/hardware/baudrate# python2 baudrate.py -a

Starting baudrate detection on /dew/ttyUSB@®, turn on your serial device now.
Press Ctl+C to quit.

o) Baudrate: 115200 godo

U-Boot 1.1.4 (Nov 26

Detected baudrate: 115280

Save mimicom configuration as: "C

4.3.3. Baud Rate Identification using PicoScope
Using PicoScope for this task is often overkill and previous techniques should be preferred, but this section gives
an example of usage of PicoScope that can be replicated for testing any other points on the board (especially
tricky locations on the PCB where we cannot directly plug some jump wires).

https://github.com/devttys0/baudrate

The software for PicoScope is available at https://www.picotech.com/downloads.

1. Connect the PicoScope’s black probe (GND) to one GND pin or any metallic surface on the PCB, so they
both share a common ground.
2. Touch the Tx pin we want to analyze with the PicoScope’s probe as shown below:

PicoScope 2000 Series

5 S N N Y

PrPico

Technology

3. Start the capture in PicoScope software. An output similar to the one below should be produced:

% PicoScope 6 - [20200918-0001 psdata] - X
File Edit Views Messurements Jooks Help
mrl.h.‘ ‘-}m”ﬂliﬁu;/dw v‘b”li‘\ﬁki |>”|l<‘ 120f14 |>]@” X1 ‘»Hklg’y(&“\('\ ‘(\‘ |)iC()
T ~[v]loc ~ |[s.]«[on ~] |W‘ <
m 50 1 |2 A - X
v

5.0 ®
-250.0 -200.0 -1500 -1000 500 0.0 500 1000 1500 2000 2500
T s =10

tn|1252ps |1282ps |1252pr 1252pr o:
2404ps 280t ps [adorps [2a00ps 0:

1 Whoie vace
h [Whoi sace
Repeat v ﬂ:‘ A v ‘ xm‘mwosmv‘ > H 4 |50% r R Measurements [B‘ Rulers [Notes [

4. The delta time corresponding to the transmission of 1-bit can be measured in the software. In the
example, this delta time for 1-bit is roughly equal to 8. 06 ps. Therefore the Baud rate is about 1/(8, 06
* 10"-6) = 123 977.We can conclude again that the actual Baud rate is 115200, since it is the closest
value from common Baud rates.

4.4. Interaction with UART

When UART pinouts and Baud rate are known, it is possible to interact directly with UART. To do so, one of the
next devices can be used:

https://www.picotech.com/downloads

— Simple UART-to-USB serial adapter FT232 (easiest way)
— Multi-purpose device such as Bus Pirate

But before all, it is necessary to make sure that it is possible to connect jump wires onto the UART interface.
Indeed, it is pretty common to see PCB where pin headers have been removed on production. In such a case,
there are often only pads looking like small holes in the PCB. To circumvent this problem, it is needed to solder
our own pin headers to be able to connect jump wires.

Here is an example of UART with removed pin headers:

Warning:
Make sure to not introduce false contact when soldering pin headers to the PCB. It is indeed essential to make

sure that each soldered pin is in contact with one single pad only.

4.4.1. Using UART-to-USB serial adapter FT232
Connecting UART-to-USB serial adapter FT232RL to UART is straightforward:

1. Connect adapter’s GND to UART’s GND.
2. Connect adapter’s Tx to UART’s Rx.
3. Connect adapter’s Rx to UART’s Tx.

Device 1 Device 2

4. Plug the adapter to your computer via USB.

2=)Y)

5. Runthe command sudo dmesg to see which device file descriptor it was assigned to. Typically, it will
be assigned to /dev/ttyUSBO if you do not have any other peripheral devices attached.

6. Run aterminal emulator such as screen and pass it the file descriptor and the identified Baud rate:
screen /dev/ttyUSBO 115200

4.4.2. Using Bus Pirate

Connecting Bus Pirate to UART requires a bit more steps:

Connect Bus Pirate’s GND to UART’s GND. &P COMS5 - PuTTY
Connect Bus Pirate’s MISO to UART’s Rx.
Connect Bus Pirate’s MOSI to UART’s Tx.
Plug the Bus Pirate to your computer via USB.
Connect to Bus Pirate with terminal emulator
with the Baud rate 115200:
screen /dev/ttyUSBO 115200
6. Enter the following on prompt “HiZ>":

a. m—to change the mode

b. 3 —for UART mode

c. Depends on the target UART — for

Baud rate (e.g., 9 for 115200 bps)

d. 1-for 8 bits of data, no parity control

e. 1—for1stop bit

f. 1 —forldle 1 receive polarity

g. 2-for Normal output type
7. At the “UART>” prompt. Enter “(0)” to show

available macros:

8. Enter “(3)” to enter bridge mode with flow
control and hit “space” and the terminal will
receive input from your device.

ihhwnNeR

4.5. U-Boot Bootloader Exploitation
4.5.1. Boot Logs Analysis

Any embedded device typically sends a lot of debug information to the UART interface at boot time. Therefore,
it is advised to capture all the data received via UART and to analyze it to look for interesting information,
especially technical information such as:

— Product names and version numbers,

— Bootloader,

— Operating system,

— Architecture,

- Memory types,

- Memory layout: where each physical non-volatile memory (Flash, EEPROM, etc.) is mapped in RAM?
- Filesystem (SquashFS, CramFS, JFFS, YAFFS, etc.) and partitions,

— Services running,

— Credentials in cleartext if you are lucky enough.

Examples:

— Boot logs from a Netgear router: In red, the most important information that can be extracted:
o Bootloaderis U-Boot 1.1.4 (very popular bootloader for embedded devices).
o RAM 32 MB is present.
o Flash memory of 4 MB is present.

U-Boot 1.1.4 (Nov 26 15:58

DMT Hw TD: 2076394 flash 4MB RAM 32MB U-boot dni29 V@.5
DRAM:

Wasp (16bit) ddrl init
- @=1f]

iceIdl @=x16

ATHR_PH
ATHR_PH

:15:9
nit lan
resetting
reset done
ATHR_PHY
ATHR_PH
ATHR_PHY
ATHR_PH
ATHR_PH
ATHR_PH
ATHR_PH
ATHR_PH

Boot logs from a PaloAlto network device: In red, the most important information that can be
extracted:
o Useof TPM 2.0 for securing boot sequence integrity.
o Firmware in useis: CloudGenix version 5.6.3-bll
= |t appears to be a Linux-based firmware.
o The bootloader in use is Grub.
o Some service daemons are started:
= SSH server (sshd)
= BGP server (bgpd)
= DHCP server
= SNMP server (snmpd)
o Standard ext2 Linux filesystem is used since the utility e2fsck is used for checking it.
= 2 partitions IMG1 and IMG2 are checked at boot time.

no such device: DVT.
Checking newer image (hdl,gpt7)/ 5.6.3-bll

feature: ok

licenses.tar.gz: ok

Booting hdl,gpt7 at 2022-09-07 11:57:13 Wednesday
no suitable video mode found.

Booting in blind mode

[INIT:DEBUG] early setup

skull9l

Error running: fsck.fat -y /dev/sdal

fsck.fat 4.1 (2017-01-24)

0x25: Dirty bit is set. Fs was not properly unmounted and some data may be corrupt.
Automatically removing dirty bit.

Performing changes.

Error running: e2fsck -y /dev/sda6

was not cleanly unmounted, check forced.
Checking inodes, blocks, and sizes
Checking directory structure
Checking directory connectivity
Checking reference counts
Checking group summary information

Error running: e2fsck -y /dev/sda7

was not cleanly unmounted, check forced.
: Checking inodes, blocks, and sizes
Checking directory structure
Checking directory connectivity
Checking reference counts
Checking group summary information

[INITRD] 5.6.3-bll

Stopping system message bus: dbus.

Starting system message bus: dbus.

Starting TCG TSS2 Access Broker and Resource Management daemon: tpm2-abrmd.
[VERIFY] cgnx-angrybird

[VERIFY] cgnx-antelope

[VERIFY] cgnx-apix

[VERIFY] cgnx-beaver

[VERIFY] cgnx-bulldog

[VERIFY] cgnx-bwm

[VERIFY] cgnx-cheetah

[cgnx-cman

[cgnx-cpld

[

VERIFY
VERIFY

[VERIFY
[VERIFY
[VERIFY
[VERIFY
[VERIFY
[VERIFY
[VERIFY
[VERIFY
[VERIFY

cgnx-falcon

cgnx—-goblin

cgnx-hellcat

cgnx-impala
cgnx-initramfs-install-com
cgnx-initramfs-install-op
cgnx-initscripts-interface-setting
cgnx-initscripts-models
cgnx-initscripts-vff

]
]
]
]
]
]
]
]
VERIFY] cgnx-cpldfw
]
]
]
]
]
]
]
]
1

cgnx-initscripts

cgnx-ipfix

cgnx-lancer

cgnx-lion

cgnx-nimrod

Ccgnx-poros

cgnx-proteus

cgnx-spider

cgnx-syslog-rtr

cgnx-upp

openssl

gat-c2xxx

gat

libcryptol.0.2

libssl1.0.2
[INITRD] Switch root
INIT: version 2.88 booting
Loading fuse module.
Mounting fuse control filesystem.
Starting udev
Reboot-reason: power button pressed Wed Sep 7 11:54:50 2022
INIT: Entering runlevel: 5
Operating in Non-Fips mode
Configuring network interfaces... done.
Removing stale PID file /var/run/dbus/pid.
Starting system message bus: dbus.
Starting random number generator daemon
Initializing available sources

Failed to init entropy source hwrng

Enabling RDRAND rng support

Initializing entropy source rdrand

Starting irgbalance: done

Starting syslogd/klogd: done

daemon not start due to lack of /dev/watchdog

No kdump kernel image found.

Starting TCG TSS2 Access Broker and Resource Management daemon: tpm2-abrmd.

DRIVE sda 3
DRIVE sdb 3

Starting vmware tools daemon: OK

Starting quagga watchdog daemon: watchquagga.

Processing file: /etc/c2xxx ga dev0.conf

Parity err reporting is disabled.

QAT running.

Starting TPM2 Monitoring Script daemon: tpm2abrmdscript started.

The most common bootloader used on embedded device is U-Boot (https://github.com/u-boot/u-boot -
https://docs.u-boot.org/en/latest/). This section is therefore focusing on this bootloader, but some techniques
can be adapted to other bootloaders. U-Boot is lightweight but supports a lot of features that can be enabled
or disabled by the device’s manufacturer: memory read/write commands, load/execute binary files, re-flash
firmware, PXE boot, TFTP client/server, etc. They are available via the bootloader menu that might be accessible
through UART by different methods, detailed after.

https://github.com/u-boot/u-boot
https://docs.u-boot.org/en/latest/

4.5.2. Access the Bootloader

4.5.2.1.Standard Method
It is often possible to interrupt the booting process in order to access the bootloader menu. Most of the time, it
can be easily done by pressing a key quickly after powering on the device. Here is an example where any
keystroke sent through UART stops the autoboot process and fallback to U-Boot Bootloader prompt:

U-Boot

DNI HW ID 76390 B RAM 3 U-boot dni29 v@.5
DRAM:

fo7fd4
1f97fbe
f77fb0

eldl @x16

environment

ip ATHR_PHY
Ip ATHR_PHY

up
etnt
/ key to stop autoboot:

More complicated cases can be faced where only a specific combination of keystrokes - possibly an exotic one
— will permit to get access to the bootloader. To overcome such an issue, a Python script performing keystrokes
bruteforce has been developed (see below) and can be adapted to your needs. It gives an example of usage of
the PySerial library (https://pyserial.readthedocs.io/en/latest/pyserial _api.html) that is useful to interact with
UART programmatically. In particular, this script has given successful results during the audit of a router where
the sequence of keystrokes needed to interrupt the booting process was unknown.

#!/usr/bin/env
-*- coding: utf-8 -*-

import colored

import serial

from time import sleep, time

from argparse import ArgumentParser, FileType
from datetime import datetime

from traceback import format_exc

def colorize(string, color= , highlight= , attrs=
return colored. (string,
(colored.fg(color) if color else '') + \
(colored.bg(highlight) if highlight else '') + \
(colored. (attrs) if attrs else '"))

def info(string):
(('[*] ', color='light_blue', attrs='bold') + string)

https://pyserial.readthedocs.io/en/latest/pyserial_api.html

(string):
(('[!'] ", color="dark_orange', attrs='bold') + \
(string, color='dark_orange'))

(string):
('['] . (string), color='red', attrs='bold"))

(string):
(('[+] . (string), color="green_3b', attrs='bold"))

(ser):

to_receive = ser.in_waiting
(.5)
while to_receive < ser.in_waiting:
to_receive = ser.in_waiting
(1)

content = ser. (to_receive). ('utf-8', 'backslashreplace
return content

(ser):
content = (ser)
('Content received: len= . (content)))
(content)

if (content)>0:
while
content = (ser)
(content)
#sleep(0.2)
if (content) == @:
break

def (device, speed, sleeptime, cmd, sendbreak):
('Connect to device cel . (device))
try:
with serial. (device, speed, timeout=0) as ser:
ser. O
ser. O
ser. (b"\n\n")
('Connection success')
content = (ser)
('Received content:")
(content)

if cmd:

('Send command " e
ser. (cmd.)
ser. (b'\n")

(ser)

elif sendbreak:
('Send break...")
while
ser.
ser.
ser.
ser.
(0.1)

0
0
0
9)

else:
for i in (oxff+1):
for j in (oxff+1):
b - ([3,31)
('Sending keystroke:

ser. (b)

ser. (b'\n")

(ser)

(sleeptime)
(ser)

except as e:
('An error occured:

if __name__ == '_ _main_
overall start_time O
parser = (description="")

parser. ('-d', dest='device', type= , required= , help="The serial device.

/dev/tty.usbmodem")

parser. ('-s', '--speed', type=int, dest='speed', default=115200, help='Baud rate')

parser. ('--sleep', type= , dest="sleep', default=0.1, help='Sleep time (in seconds)
between each attempt (eg ©.2)')

parser. ('-c', '--cmd', type= , dest="cmd', help="'Command to send’

parser. ('--break', action ore_true', dest='sendbreak', help='Send break')

args = parser. O

(args.device, args.speed, args.sleep, args.cmd, args.sendbreak)

('Script finished: {} seconds'. () - overall start_time, 2)))

When bootloader menu has been accessed, it is possible to list all the available commands. The list will depend
on the configuration of U-Boot done by the manufacturer, and it is specific to the target device. It is accessible
via the help command (or “?”). Here is an example:

bootm E i i from memc

bootp i = et k using Boot! FTP protocol
P
ninfo and information

client to obtain IP/boot params

- start tftp server
pplicati

iminfo

imls

itest return true

loop infinit

macset -

macshi

md

mii \ mmands

mm r o-incrementing)
mtest

mw

nm)
nmrp - 2 i r im: or stri

nor_fw_

tion
/TFTP protocol

gion Numbe
ds in
nment

minimal test 1i
pboot- b i e

int monitor
n M
wpspin number

First of all, several commands can be used in order to gather additional technical information about the device.
For example, here, the commands bdinfo, board_ssid_show, coninfo, imls, version, printenv
give juicy information that gives more context and that can be reused later.

stderr

ma compressed)

(u-boot), 64k(u-boot-en otfs),1408k(uImage),64k(mibe), 64k (ART)

4.5.2.2. Flash Memory Glitching
In some unfortunate situations, gaining access to the bootloader might not be so straightforward. It is indeed
possible that there is no way to interrupt the booting process by pressing a key or a combination of keys. By
default, there is a countdown mechanism on U-Boot during which the boot process can be interrupted by
pressing a key. However it can be set to a duration of 0 in production. Alternatively, the bootloader may be
protected by an authentication with non-trivial or non-default credentials.

A “hardcore” trick that might allow to overcome such issue consists in shorting the Flash memory storing the
Firmware during the booting process, when U-Boot is loading the embedded OS. Basically, this technique
consists in creating a temporary connection using jump wires between one of the inputs/outputs (I/0) pins of
the Flash chip and the ground (i.e., one GND pin). As a requirement, I/O pins of the memory chip must be
identified using its datasheet (MISO/MOSI pins for SPI Flash for example). If the shorting works, the kernel is
likely to panic due to read error, and a default bootloader prompt can pop. Note that this technique will probably
require a lot of trials and errors.

Here is a successful example taken from https://blog.nviso.eu/2020/02/21/iot-hacking-field-notes-1-intro-to-
glitching-attacks/ where the U-Boot’s countdown mechanism is set to 0, but when short-circuiting the Flash
memory chip at boot, it fallbacks to the bootloader shell:

https://blog.nviso.eu/2020/02/21/iot-hacking-field-notes-1-intro-to-glitching-attacks/
https://blog.nviso.eu/2020/02/21/iot-hacking-field-notes-1-intro-to-glitching-attacks/

DP version string unchanged:
Hit any key to stop autoboot: ©
Booting from ubi ...
mtdl is detached from ubi®@
attaching mtdl to ubi@

UBI:
UBI:
UBI:
UBI:
UBI:
UBI:
UBI:

UBI
UBI
UBI
UBI
UBI
UBI
UBI

physical eraseblock size:

logical eraseblock size:
smallest flash I/0 unit:

VID header offset:

data offset:

error:
error:
error:
error:
error:
error:

ubi_io_read:
ubi_io_read:
ubi_io_read:
ubi_io_read:

error
error
error
error

131072
126976
2048

'U-Boot 201X.0X-DPX.X.X (Feb XX 20XX - XX:XX:XX)'

bytes (128 KiB)
bytes

2048 (aligned 2048)

4096
-74 while
-74 while
-74 while
-74 while

ubi_init: cannot attach mtdl
ubi_init: UBI error: cannot initialize UBI, error -22
init error 22
UBIFS error (pid 0): ubifs_get_sb: cannot open "ubiX:rootXXX", error -19

UBIFS error (pid @): ubifs_mount: Error reading superblock on volume 'ubiX:rootXXX' errno=-19!

reading 64 bytes from PEB 1871:0, read 64 bytes
reading 2048 bytes from PEB 1871:2048, read 2048 bytes
reading 64 bytes from PEB 1872:0, read 64 bytes
reading 2048 bytes from PEB 1872:2048, read 2048 bytes

Kernel image @ Ox42000000 [©x000000 - 0x449030]
ERROR: Did not find a cmdline Flattened Device Tree
Could not find a valid device tree

=> printenv

alt_vol=rootfsA
baudrate=115200

4.5.3. U-Boot Abuse to Dump the Firmware

4.5.3.1.Via command md (Memory Display)
If available, the command md followed by a memory address allows to read the memory located at that address,
as shown below:

According to the documentation (https://docs.u-boot.org/en/latest/usage/cmd/md.html), it is also possible to
specify the size of each value to display like when using xxd: we can use md.b <start_address> <length>
in order to display a given number of bytes from the specified address.

Therefore, it is possible to abuse this command in order to get a full dump of the firmware since the information
retrieved before gave us the address where the Flash memory was mapped in RAM (here Ox9F000000) and its
full size (here 0x400000 bytes for 4 MB). Moreover there is also no doubt that the firmware is stored on that
Flash (because this is the only non-volatile memory chip present on the target device). Here is the process:

1. Connect to UART using screen with logging enabled, via -L -Logfile <filename>
2. Boot the device and access the U-Boot menu.
3. Runthe command: md.b <start_address> <length_in_bytes>.

In our example: md.b 9F000000 OxLOO000

Hardware Hacking — Methodology & Tips

51/103

https://docs.u-boot.org/en/latest/usage/cmd/md.html

ethe,

3

WO W00 O W 00w o

Wait for all outputs. It can take a long time depending on the size of memory to dump.

5. Clean the log file to keep only the output from the md.b command.

6. Convert the full hexadecimal dump into raw binary file using the script uboot-mdb-dump
(https://github.com/gmbnomis/uboot-mdb-dump).

$ python3 uboot_mdb_to_image.py < ojet-Netgear/uart/flashdump.txt > flashdump.bin

$ 11

- jbr
TWKT-XT-X jbr jbr 2
] ishdump.bin

C flashdump.bin | head

hdump.bin | tail

Tips:
When accessing the bootloader, the Firmware is not necessarily already loaded and mapped into RAM. In this
case, you will get a dump full of zeros or of random binary data. Therefore, we need to first manually load the
content of the Flash memory where the firmware is stored into RAM, before doing the manipulation explained
in this section. Here is the process to do so:
1. |Initialize the Flash memory:
sf probe 0
2. Copy the content of Flash memory into RAM:
sf read <start_address_to_load_in_RAM> <start_offset_in_Flash>
<length_in_bytes>
In the previous example, it would be:
sf read 9FO00000 Ox0 Ox4O0C00

4.5.3.2. Using SD Card (command mmc)
If the device supports SD card and the U-Boot command mmc is available, it is possible to read/write directly
from/to an external SD card peripheral from the device.

https://github.com/gmbnomis/uboot-mdb-dump

mmC

mmc - MMC sub system

Usage:

mmc read addr blk# cnt

mmc write addr blk# cont

mmc erase blk# cnt

mmC rescan

mmc part - lists available partition on current mmc device

mmc dev [dev] [part] - show or set current mmc device [partition]

mmc list - lists available devices

Therefore, it is possible to abuse this command in order to dump the firmware onto an SD card plugged into the
device. Here is the process:

1. Insert the SD card into the device.
List the MMC devices to see if the SD card is properly detected with command: mmc list
3. Dump the Firmware onto the SD card, by using the command:
mmc write <start_address> <block_offset> <number_block_counts>
with:
~ The start address where the Flash memory was mapped in RAM,
- The block offset on the SD card (will be 0 to start at the beginning),
-~ The number of block counts to write. A block size is usually 512 bytes. So, for example, if the
total Flash memory size is 4 MB = 4194304 bytes = 0Ox4OOEEO bytes, we must use
4194304/512 = 8192 = 0x2000

The final command will look like this:
mmc write 9FOO000O0 O Ox2000

4. When the transfer to SD card is finished, the SD card can be inserted into your computer, and the dump
can be extracted using the command dd by specifying the number of written blocks (8192 in the

previous example), as follows:
dd if=/dev/sda of=dump.bin count=8192

4.5.3.3. Using USB (command usb)
If the device supports external USB peripherals and the U-Boot command usb is available, it is possible to
read/write directly to an external USB storage from the device.

ush
ush - USB sub-system

Usage:
start - start (scan) USB controller
reset - reset (rescan) USB controller
stop [f] - stop USB [f]=force stop
tree - show USB device tree
info [dev] - show awailable USB devices
test [dev] [port] [mode] - set USB 2.8 test mode

(specify port @ to indicate the device's upstream port)
Available modes: 1, K, S[E® NAK], P[acket], F[orce_Enable]
storage - show details of USB storage devices

dev [dev] - show or set current USB storage device

part [dev] - print partition table of one or all USB storage devices
read addr blk# cnt - read “cnt” blocks starting at block ~blk#®

to memory address ~addr’

write addr blk# cnt - write “cnt® blocks starting at block ~blk"

from memory address ~addr®

The principle is the same as with SD card described previously:

Plug the USB peripheral to the device.
Start USB controller, and list available USB devices to see if our USB peripheral has been properly
detected:

usb start

usb info

Dump the Firmware onto the USB peripheral, by using the command:
usbwrite <start_address> <block_offset> <number_block_counts>
with the same parameters as with mmc write described in the previous section.
Extract the dumped firmware using dd command.

4.5.3.4. Using TFTP (command tftp)
TFTP protocol (Trivial FTP) is a simple and lightweight file transfer protocol that is commonly used by embedded
devices. It is built over UDP and does not include a built-in authentication mechanism. Default port for TFTP
server is 69/udp. A TFTP client can be integrated into U-Boot, via a tftp command, in order to allow for copying
data into/from the embedded device.

Here is the process to dump the firmware and transferring it to an attacker’s computer via TFTP:

First of all, a TFTP server must be installed on the attacker’s machine. On Debian-like Linux distribution,
it is straightforward:

sudo apt install tftpd-hpa

Then, make sure that the service is running. The directory where TFTP server is mapped is, by default:
/srv/tftp/.

On U-Boot, TFTP client configuration is done by passing correct IP addresses to environment variables
as follows:

setenv ipaddr <IP_embedded_device>

setenv serverip <IP_server>

saveenv

Check that the environment variables have been correctly updated:

printenv

A limitation of TFTP server is that, by default, it is not possible to create files on the server from scratch
from a client. To overcome this limitation, the trick is just to create an empty file on the server with
write permission. This file is aimed at being filled when transferring the Firmware.

cd /srv/tftp

sudo touch firmware.bin

sudo chmod 666 firmware.bin

Finally, the transfer of firmware using TFTP can be done as follows:

tftp <start_address> firmware.bin <length_in_bytes>

For example, if the Firmware is loaded in RAM at the address 0x82000000 and has a size of 16 MB =
16777216 bytes = 0x1000000 bytes, the command will be:

hisilicon # tftp 0x82000000 firmware.bin 0x1000000

Hisilicon ETH net controler

MAC: 00-00-23-34-45-66

eth® : phy status change : LINK=DOWN : DUPLEX=FULL : SPEED=160M

eth@ : phy status change : LINK=UP : DUPLEX=FULL : SPEED=100M

TFTP to server 10.42.0.1; our IP address is 10.42.0.2

Upload Filename 'firmware.bin'.

Upload from address: 0x82000000, 16.000 MB to be send ...

Uploading: # [Connected]

bros e s e e e S S Y Y S Y S S S S S Y S S

VS S G S S 3 S S Y o 5 5 Y S Y S S 5,

b S S S S S S S S S S S S S S Sy S S S S S S S S S S S S S S S 5

R R b G R R R b h o e 66 6 K668 6 6 666!

T TATIIKI6IH %67 %67667676 69667696766 7696 76 766766 764667626 7676 766 7616 1696 1676 46767626 96 6 76 46 76676 467696

S IIIIIRIIIII6TK % 76767676 196676 46706069676 766 I66 2066766 266 90767606 16966 26 46707626 966 966 9662646696
16.000 MB upload ok.

hisilicon #

4.5.4. U-Boot Abuse to Get a Shell
Sometimes, U-Boot can also be abused in order to get a (root) shell on the device. It is particularly useful when
an authentication is normally required after the booting process, or if it only gives access to a restricted
CLI/menu.

In U-Boot, when we display the environment variables, we can see that there is one variable named bootargs,
which contains the various parameters used in booting process. In particular, the argument named init
contains the full path of the script/binary that is launched when starting the operating system.

bin/init| mtdpar t or(6k(u-boot),64k({u-boot-env),

x0T

A well-known and trivial trick consists in replacing the value of init by /bin/sh as follows:

setenv bootargs ‘console=ttyS0,115200 root=31:02 rootfstype=jffs2 init=/bin/sh [..]’

Note:
Copy all the data before and after the parameter init inside bootargs when updating its value. After
running the command setenv, check that the bootargs variable has been correctly updated via printenv.

After rebooting the device, if the init argument from bootargs is taken into account, a shell prompt should
be given. If it does not work, it might mean that the binary /bin/sh is not available on the system. In this case,
the goal is to find an alternative. For example, if BusyBox is used, we can try something like: init=/sbin/init
&& /bin/busybox sh. Several trials and errors might be required...

Tip: You can also try to use other values for the parameter console: ttyS1, ttyS2..

4.6. Post-Boot Exploitation
4.6.1. Unauthenticated Root Shell

When a device has finished booting (i.e., when the embedded OS has been loaded), it is not so uncommon that
it simply gives access to a non-password protected (root) shell via UART. In this lucky situation, it gives a direct
live access to the device’s firmware. It is therefore very convenient because it makes it possible to directly
analyze the device “from the inside”:

— Browse the filesystem,

— Check running process,

— Check network configuration and connectivity,
— Check running services,

— Execute and debug any binary,

— Access configuration files, logs, secrets, etc.

- Etc.

Note:
Most of the time, the shell on Linux-based embedded device is provided by Busybox that implements ash
(simple Unix shell) and a collection of the most essential command-line utilities into one single binary.

Boot up procedure is Finished!!!

ase press
nding di
Sending disc

BusyBox v1.4.
Enter "help’

Sending

default_language version

module_name

ending discover...

4.6.2. Authentication Required

Most of the time, you are not so lucky, and the access to a shell via UART requires a prior authentication (login
prompt).
Here is an example from a PaloAlto network device where it asks for credentials when the boot process is

finished:

ent daemon: tpm2-abrmd.

g n 'k manage
g vmware tools

In such a case, there are several possibilities to break in:

— Manually guess weak credentials.
— Check for known default credentials:
o In online databases that contain many credentials for various manufacturers/devices such as

https://cirt.net/passwords.
o In official or unofficial documentation available on the official website, online forums, etc. (cf.
3. Information Gathering).
— Conduct automated dictionary attack through UART using a Python script such as UARTBruteforcer
(https://github.com/firefart/UARTBruteForcer) or a custom one built using PySerial library. Note that
such attack cannot be very fast due to the design of UART, therefore wordlists should be well chosen.

https://cirt.net/passwords
https://github.com/firefart/UARTBruteForcer

— Check for trivial authentication bypass by trying to send common combinations of keystrokes such as
Ctrl+C. Here is an example where the standard login prompt is discarded when pressing such keys, and
a non-standard login prompt that could give access to more control is displayed instead:

[8.510000] Starting random number generator thread

[26.370 cmdsrv.c:825 client_online] offline: ©x656b18, resource temporarily unavail
[644] o1 Jan @0:00:26.444 # Warning: 32 bit instance detected but no memory limit s

Standard
Login Prompt

login:

(.i:i\.le root password for system maintenance Non-Standard
(or type Control-D for normal H Login Prompt

— Check for trivial buffer overflow by sending very long credentials “AAAAA....”. On old embedded devices,
it can still be possible.

— Search for more complex vulnerabilities in the firmware that might allow for authentication bypass. Of
course, it requires to get hands on the firmware by an alternative means (cf. 3.6. Ways to Get Access to
Firmware).

4.6.3. Restricted Shell (CLI)
The shell provided through UART (after authentication or not) can be a restricted CLI (Command-Line Interface)
designed to give access to only a list of pre-defined commands, often with very limited access to the underlying
system (e.g., no direct possibility to browse the filesystem, to read any file, to execute any binary, etc.).

Here is an illustration of restricted CLI:

shell # help
Possible commands:
exit Exit the management session
nslookup Look up a DNS name
ping Ping a host
poweroff Shut down the system
reboot Reboot the system

tcpdump Perform tcpdump on a network interface
tools Tools commands

traceroute Trace connectivity to a host

vshell System shell

shell #

As a hacker, our goal is to find a way to escape from such a restricted shell and to get a real system shell. The
following guideline can be followed:

— Try to send common combinations of keystrokes such as Ctr1+C in an attempt to kill the CLI process.
Try it at different stages, that is to say when idle (waiting for command), but also when running a
command.

- Try to escape from the context of a command, by appending special characters such as “;”, “|”, “&8&”,
etc. followed by the system command you want to run. Here is a trivial example:

shell # ping example.com ; /bin/sh
PING example.com (203.0.113.0) 56(84) bytes of data.
64 bytes from 203.0.113.0 :

--- example.com ping statistics ---

1 packets transmitted, 1 received, 0% packet loss, time 7@3ms
rtt min/avg/max/mdev = 14.947/14.947/14.947/0.000 ms

#

— Try previous command injection in every parameter supported, for every command of the CLI. It is
indeed possible that the final system command that is actually run is built by concatenation of
parameters coming from the CLI, without proper sanitization. Here is an example from a real security
audit where the injection has been performed inside one:

dump bfd status 1

uid=8710(baldwins) gic=8712(baldwins
dump bfd status localv

When the firmware is available, it can be easier to reverse engineer it in order to find such vulnerabilities
(cf. 8.5.2. Discovery of a Command Injection Vulnerability).

— Search for backdoor commands that could give access to unrestricted shell or more privileged
features:
o Atfirst, try traditional command names such as: debug, support, admin, shell,
o Otherwise, more advanced search involving reversing engineering can be done. Once again, it
requires the Firmware to be available (cf. 8.5.1. Discovery of a Backdoor command).

When an escape from limited CLI has been found, it almost always leads to command execution as root,

because there is almost never any process separation in embedded devices. Therefore, everything is often
running as root!

Note:

Sometimes, even more restriction is applied, and only a simple menu is displayed like in the following example
taken from a UART access on a router:

: 00-1D-AA-48-A8-78
IP Address 2 192.168.1°1
IP Subnet Mask 2 255.255.255.0

Firmware Version : 3.9.0_BT

Main Menu
: Enable TFTP Server
Please Select Item : [

5.JTAG
5.1. JTAG Protocol

JTAG (Joint Test Action Group) protocol is a simple and widely used testing and debugging interface for
embedded devices. It allows for direct communication with IC chips on a PCB for purposes such as testing,
debugging, and programming.

JTAG protocol is based on IEEE 1149.1 standard which defines what is called “Boundary Scan” architecture. The
main advantage offered by utilising boundary scan technology is the ability to set and read the values on pins
on the PCB without direct physical access. In other words, it provides direct interface to hardware on PCB, such
as Flash or RAM.

The JTAG's boundary scan technology is implemented by the following components:

— TAP (Test Access Port) Controller: It is a finite state machine whose transitions are controlled by the
TMS signal (cf. JTAG pins below). It is the component that control the behaviour of the JTAG system, i.e.,
depending on the current state we are in, a specific operation is done by JTAG (for example reading a
register, updating a register, change the instruction to execute, etc.). The figure below is the TAP state
machine:

TMS =1 .
test logic reset g

™

TMS =0

TMS =0
run test idle

select DR scan select IR scan

TME =1

TS =1

exit 2 DR

exit 2 IR
TMS =1

TS =10

update DR
TMS =0

— Instruction Register (IR): This register holds the current instruction that is executed by the JTAG system.
Its content is used by the TAP controller to decide what to do with signals that are received. In general,
the value of IR will define which Data Register must be used to store data from signal received on input
pin (TDI) or to read data to send through output pin (TDO).

— Data Registers (DR): There are three primary data registers required by JTAG standard:

o BSR: Main testing data register. It is used to move data to and from the I/O pins of a device.
o BYPASS: Single-bit register. It is used to pass data from TDI to TDO.
o IDCODE: This register contains the ID code and revision number for the device.

- Bounaary

T T._!_,; — / Scan Cells

| | 11O
Pads
| |
) ; Boundary
TOI =]
DI 1 Instruction Register K/ Scan Path
— BYPASS Register —
I Register

Other Register

TOK —4——

™S | Test Access Ponrt
TRST Controller
TDOD

JTAG standard provides a framework for manufacturers that can extend it for their needs, and provide device-
specific functionalities such as:

— Reading/Writing internal memory (inside MCU/SoC).

-~ On-chip debugging, i.e., allowing to single-step/break execution on microcontroller.

— Indirect access to other connected on-board components such as Flash/EEPROM memory chips. This
access is done via SoC’s external pins connected to these components.

The figure below shows this distinction between JTAG standard and device-specific functionality:

SoC

CPU/Core

On-chip
Debug Logic

~(Debug Bus \r
N\ J

= Device specific functionality
~ DTAB

P e e e o e s s e e e —
‘ TAP LR JTAG standard
‘ Controller | [DRs

e
X On-chip TAP =

TMS TCK TDI TDO TRST

JTAG pins are:

— TDI (Test Data Input) = This is the pin that receives data, which is passed into the JTAG's logic. The signal
presented at TDI is sampled on the rising edge of TCK.

— TDO (Test Data Output) = This is the pin that sends data out of the chip. Changes in the state of the
signal coming out TDO occur on the falling edge of TCK.

— TMS (Test Mode Select) = This pin is used to control the state machine implemented inside the TAP
controller. At every beat of the clock TCK, the signal received on TMS pin is checked and depending on
its value, the current state in the state machine is updated (cf. previous figure).

— TCK (Test Clock) = Clock used for synchronization. It defines how often the TAP controller will take a
single action (i.e., jump to the next state in the state machine). The clock’s speed is not specified by the
JTAG standard, and therefore the device connected to JTAG interface can determine it.

— TRST (Test Reset) = Used to reset the TAP controller, i.e., to put the state machine into its initial state.
It is optional since it is possible to reset the TAP controller by using only the TMS pin. Indeed, if the TMS
is held at the value 1 for five consecutive clock cycles, it will invoke a reset in the same way the TRST pin
would.

The supported instructions that can be put inside the Instruction Register (IR) are listed below:

— BYPASS = This instruction causes the TDI and TDO pins to be connected via the single-bit data register
also named BYPASS, which is used as an intermediary. In other words, every bit received on TDI is
written into BYPASS register, and then this register is read to send its value through TDO. This instruction
is used for testing other components in the JTAG chain without any unnecessary overhead.

— EXTEST =This instruction causes the TDI and TDO pins to be connected via the BSR data register. States
of the device’s pins can be read (their value is copied inside this BSR register), or it is possible to set
specific value to some device’s pins (by writing the value into this BSR register). The specific action to
perform using this BSR register actually depends on the current state of the JTAG system in the TAP
state machine.

— SAMPLE/PRELOAD = Again, this instruction causes the TDI and TDO pins to be connected via the BSR
data register. However, contrary to EXTEST, the device is left in its normal functional mode (i.e., read-
only mode, it is not possible to update manually the state of the device’s pins by writing into BSR). This
instruction is used to either capture or update the value of BSR. In particular, it can be used to update
BSR register before using the EXTEST instruction.

— IDCODE (optional) = This instruction returns the vendor/device ID code stored inside the IDCODE data
register.

— INTEST (optional) = This instruction is similar to EXTEST but used for the manipulation of on-chip
internal logic instead of external pins.

5.2. JTAG Pinout Identification

If you are lucky enough, the PCB has labels indicating clearly the JTAG pinouts. But most of the time, you will
have to manually identify the pinout, i.e., to identify the pins corresponding to TDI, TDO, TCK and TMS.

9.2.1. Standard JTAG Pinout
The first thing to do when facing a potential JTAG interface is to look for its resemblance to a standard
configuration. The website http://www.jtagtest.com/pinouts/ lists a lot of standard JTAG pinouts. If the
architecture of the device’s microcontroller is known (e.g., ARM, MIPS, etc.), it can also give additional clues
about the probability that a candidate is good or not.

When an interface found on a PCB has a configuration similar to one found on this website (i.e., the same
number of rows and of pins), the first thing to do is to check if the positions of GND pins match. It can be quickly
done using a multimeter in “continuity test” mode, as shown in 4.2. UART Pinouts Identification. If the positions
match, it might be a good indication that you are dealing with a JTAG interface, but further tests will be required
to make sure, and to check that it is actually enabled on the tested device (cf. next sections).

http://www.jtagtest.com/pinouts/

. -JTAG Test

S IFAG-Pinouts

Home Products Documentation Download
Pinouts

20 (used with almost all ARM-based microcontrollers)
1-14 (used as a lower pin-count version of ARM-20)
EJT used with all MIPS microcontrollers (mostly embedded devices, can be found on many WiFi devices)

Compatible with AVR, Altera JTAG, ... (widely used)
ompatible with AVR, Altera JTAG, ... (widely used)
artially compatible with AVR JTAG

Non-standard manufacturer-specific pinouts

Toshiba MIPS JTAG header

nTRST w
TDI
DO
TMS
TCK

Tip:
It is common to see Tag—Connect interface (https://www.tag-connect.com/info) for JTAG. This has a small
footprint on PCB but can be easily recognized because it looks like in this picture:

https://www.tag-connect.com/info

It is designed to be used with a specific connector looking like this:

5.2.2. Using JTAGulator
The fastest and easiest way to identify JTAG pinouts on a target device is to use the hardware tool JTAGulator.
This is a device created specifically for this purpose. It has a total of 24 channels that can all be connected to
pins on a PCB, but most of the time we will not need as many, of course. It performs some kind of bruteforce on
pins by issuing either the IDCODE or BYPASS command to every permutation of pins and waits for a response.
If it receives a response, it displays the detected pinout.

The scan using IDCODE is the fastest and is aimed at being run at first. However it can only detect TDO, TCK and
TMS if it detects a JTAG interface. If this scan is successful, another scan using the BYPASS command should be
run. It is much slower but permits to detect the remaining TDI pin.

Here is how to use the JTAGulator to identify JTAG pins:

1. Connect to JTAGulatoxr’s GND pin to GND pin on the target device.
2. Connect channels CHO, CH1, CH2, ..on JTAGulator to the pinsyou want to determine on the PCB.

—

Connect the JTAGulator to your computer via USB.

Connect to the JTAGulator using terminal emulator with the Baud rate 115200:
screen /dev/ttyUSBO 115200

5. Set the correct voltage by using the command V. It supports 1.2 Vto 3.3 V. Most of the time, you
will have to set 3.3 V, which should correspond to the voltage of the device (Vcc).

W

J33 TTTITTTIT AAAAA

J333 TTTTTTT AAAAAA G
TTTT AAAAAAA G
TTTT AAA AAA G
TITT AAA AA G

TTTT AAA AA
T

AAAAA TTTTTTIT O
AAAAAA TTTTITIT O
TTT
77T
TTT 000
TTT O

Welcome to JTAGulator. Press 'H' for available commands.

IDCODE Scan)
BYPASS Scan)

) voltage: Undefined

6.

I
Enter number of

e (1.2 - 3.3, @ for off): 3.3

channels to use

Ensure connections are on CH1@..CH
Possible permutations: 99@

scan complete!

7. In this example, a JTAG interface has been successfully detected on the tested pins, and the pins TDO,
TCK and TMS have been identified. The number displayed next to each pin label corresponds to the

channel number on JTAGulator.

8. In order to confirm this discovery and to identify the remaining TDI pin, a BYPASS scan should be run
thanks to the command B, as shown below:

H

Enter number of channels to

Ensure conne
Possible permutations
€55 Sp ar to begin

us

:l)) i

9. Finally, all JTAG pins have been identified. A last test can be performed by issuing the command T. During
this test, if both TDI and TDO (input and output) match, it means that the discovered pinout was correct.

It is also possible to retrieve the vendor/device ID if it is supported by the target JTAG, by issuing the
command D:

new TDI pin
new TDO pin
new K pin
Enter new TM i
Enter numb
All other channels set to output HIGH.

Pattern in to TDI: 011001110

ern out from TDO: @11001118@
Match!
H)
TDI not needed to re eve Device ID.
Enter new TDO pin

es in JTAG chaim [1]:
et to output HIGH.

1110000 11110000111 1 (@x3FOFOFAF)

IDCODE listing complete!

I

A full video demonstration of JTAGulator recorded by its creator, Joe Grant, is available at:
https://www.youtube.com/watch?v=GgMOBhmEJXA.

5.2.3. Alternative Method using JTAGenum
When you do not have a JTAGulator, another (slower) possibility consists in using the tool JTAGenum
(https://github.com/cyphunk/JTAGenum) loaded on an Arduino-compatible microcontroller or a Raspberry Pi.
For example, the famous and cheap small boards named “Black Pill” and “Blue Pill” have a STM32F103
microcontroller and are compatible with this project.

The device you decide to use must be flashed with the JTAGenum code, using the scripts provided on the
project’s page. Then, connect to the device via USB using serial communication with Baud rate of 115200, similar
to the procedure followed with the JTAGulator. A scan can be issued to determine the JTAG pinout using the
command s, that will check every possible pin combination.

Note that, if for any reason, the JTAGenum project is not working, there are many other alternatives available
on Github.

9.2.4. Advanced Research using Visual Inspection of Lines on PCB
When JTAG interface has not been found using previous methods, it might be interesting to look closer to the
datasheet of the device’s microcontroller (MCU/SoC) and look for its pinout. Usually, microcontrollers have a
lot of different pins because they are “the brain” of the device and are aimed at communicating with many
different components, therefore their documentation can be very confusing. However, we want to look for a
reference to the JTAG protocol and see if there are dedicated pins for JTAG on the target device’s
microcontroller. To do so, we check for labels corresponding to JTAG pins in the microcontroller’s pinouts
diagram or anywhere else in the documentation.

Here is an example with the microcontroller AT91SAM7S256. In the red boxes, the pins corresponding to JTAG
lines have been highlighted (TDI, TDO, TCK, TMS):

https://www.youtube.com/watch?v=GgMOBhmEJXA
https://github.com/cyphunk/JTAGenum

[
k]

z d ¢

1 _ = =1 £ 48

—— ADREF g - PAQ [am—
GND} — GND PAL fee—

o1 ADd GND ————{GND
= ADS VDDIO ;4}3\.'_‘
=" ADG PAZ TR
' ADT PAY fas—

— VDN i : PA3D e

E) y 1 31

Hvoor ATOISAMT7S256 pam fai—
—i=] PAIT/ADO TST |osg -
—=14 PAISIADI NRST |< bLD
—et pazi PA2S pat BUITON

15| VDDCORE PA2T [=
5= PAIYAD? PAd u;‘: ('

3 A [RXD
T PAEE PAS o i
— 5 PA23 =

S PAVAD3 DI o= V3

17

Tip: Sometimes, there is no dedicated pins for JTAG but general-purpose 1/0 pins (GPIO) can be
programmed to be used for JTAG. Read the datasheet carefully!

After identifying the microcontroller’s pins related to JTAG, the game consists in trying to follow the lines on PCB
coming from those pins and see where they go. If they end to some testing points (TP), those points can be good
candidates for JTAG and might deserve further testing using the previously described method with JTAGulator
or JTAGenum. Note that it is possible to end to very tricky locations of JTAG interfaces that can only be found by
using such tricky technique. Below is an example of a very unusual location of JTAG on a Netgear router, and as
you can see, it is not constituted of a single or double row of pins/pads that could have been clearly identified:

Notes:

Following traces/lines can be easy on simple devices with single-layer PCBs (only one side of PCB is used) or
double-layer PCBs (both sides of PCB are used). However, it can be much harder with multi-layer PCBs where
some lines or fragments of lines cannot be seen by visual inspection.

S S NN R RNV e P

- +)R938 TP30:
{c102

S Csﬁlj@éls'r
= =
B mf CORT |V

Using multimeter in “continuity test” mode can help to follow traces on the PCB: place the two probes at two
locations on the PCB, it will beep if the two points are connected.

5.3. Interaction with JTAG

When JTAG pinout is known, it is possible to interact directly with JTAG. To do so, one of the next devices can
be used:

— Dedicated JTAG debugger device like Segger J-Link - https://www.segger.com/products/debug-
probes/j-link (expensive)

— Multi-purpose device such as Bus Pirate

Here is the process to follow to interact with JTAG using Bus Pirate:

1. First of all, it is required to install the tool Open0CD that will be used to send commands to the JTAG

interface. It must be installed with Bus Pirate enabled, as follows:

git clone git://git.code.sf.net/p/openocd/code

cd code

./bootstrap

./configure —--enable-maintainer-mode --disable-werror --enable-buspirate
make

sudo make install

2. Make sure that Bus Pirate’s firmware is compatible with Open0CD; otherwise you will get the error:
“Error: Bus Pirate error. Is binary/OpenOCD support enabled”. To check the firmware version, connect
to Bus Pirate, and issue the command HiZ> i. Then, check in the following table if this version is
compatible with OpenOCD. If it is not the case, upgrade the firmware by following the procedure
explained on the following page:
http://dangerousprototypes.com/docs/Pirate-

Loader console upgrade application (Linux, Mac, Windows)

https://www.segger.com/products/debug-probes/j-link
https://www.segger.com/products/debug-probes/j-link
http://dangerousprototypes.com/docs/Pirate-Loader_console_upgrade_application_(Linux,_Mac,_Windows)
http://dangerousprototypes.com/docs/Pirate-Loader_console_upgrade_application_(Linux,_Mac,_Windows)

3.

4.

JTAG and OpenOCD

The Bus Pirate is supported as a JTAG programmer/debugger by OpenQOCD. If your target is supported
by OpenOCD it may work. Slowly :) You will need to use a Bus Pirate firmware version which supports
the binary JTAG protocol — not all do.

Version Banner Works?
6.1 Firmware v6.1 r1676 enabled
6.0 Firmware v6.0 r1625 enabled
5.10 Firmware v5.10 (r559) disabled
5.9-extras Firmware v5.9 (r529) [HiZ 2WIRE 3WIRE KEYB LCD DIO] |disabled
59 Firmware v5.9 (r539) disabled
58 Firmware v5.8 (r504) enabled
robots custom | Firmware v6.0RC (r572) enabled

Connect the Bus Pirate to the JTAG interface using jump wires, as follows:

Bus Pirate JTAG Interface

GND GND
MOSI TDI
MISO TDO
CLK TCK
() T™MS

Create the adapter’s configuration file for Bus Pirate that we will name “buspirate.cfg”. Default
adapters configuration files are in the following directory on default install of Open0OCD, and can be used
as references: /usr/local/share/openocd/scripts/interface/

adapter driver buspirate

Not yet implemented properly...
#transport select jtag

Set the serial port to be used
buspirate port /dev/ttyUSBO

Set "normal" or "fast" (~1 MHz)communication speed:
buspirate speed normal

Turn OFF the voltage regulator:
Uncomment this line if Bus Pirate’s VPU is connected to VTref (3v3)
#buspirate vreg 0

open drain as we are working with pull up's
buspirate mode normal

turn pull up's on (VTref is connected to pull up's)
buspirate pullup 0

this depends on the cable, you are safe with this option
reset config srst only

5.

Check that the Open0OCD configuration is correct for our JTAG adapter, which is here Bus Pirate:
sudo openocd —f buspirate.cfg
If it is correct, an output similar to the next one will be displayed:

$ sudo openocd -f buspirate.cfg

Open On-Chip Debugger 8.7.0 (2014-04-09-15:05)

Licensed under GNU GPL v2

For bug reports, read

http: //openocd.sourceforge.net/doc/doxygen/bugs. html

Warn: Adapter driver 'buspirate' did not declare which transports it allows; assuming legacy JTAG-only
Info : only one transport option; autoselect 'jtag'

srst_only separate srst_gates_jtag srst_open_drain connect_deassert_srst

Info : Buspirate Interface ready!

Info : This adapter doesn't support configurable speed

Warn : There are no enabled taps. AUTO PROBING MIGHT NOT WORK!

Warn : AUTO autoB.tap - use "jtag newtap auto® tap -expected-id 0xBb7aeB2f ...
Warn : AUTOD auto®.tap - use "... -irlen 4"

Warn : gdb services need one or more targets defined

Since high-level implementation of JTAG is vendor/device specific (cf. 5.1. JTAG Protocol), it is necessary
to have an Open0OCD configuration file specific to the target microcontroller that supports JTAG. This
configuration file is supposed to tell OpenOCD what are the JTAG commands that are supported by the
target and how they are implemented. Therefore, it is required to have perfectly identified the device’s
MCU/SoC at this step. In this example, let us assume that we are targeting the Proxmark3 device, where
the MCU is AT91SAM7S512 (ARM) as shown in the following picture:

HHitted

\Uuu

For most MCU/SoC, OpenOCD configuration files can be found either in
/usr/share/openocd/scripts/target/ or online. For example, the online directory
https://github.com/intel/OpenOCD/tree/master/tcl/target contains a large collection of configuration
files. If the configuration for your target device is not found here, you can also perform extensive
searches on the Internet since it is likely that a hardware hacker has already developed and released a
configuration file for the target MCU/SoC.

In our example, the configuration file “at91sam7x512. cfg” corresponds to the reference of the target
MCU:

github.com

target

Gl SED T2y

am7sx.cfg

1sam9.cfg

at91sam9260.cfg

Finally, it is possible to connect to the target device through JTAG, using Bus Pirate as hardware adapter
and Open0CD as software. To do so, run the following command by supplying the two configuration files
referred previously:

openocd —f ./buspirate.cfg -f
/usr/share/openocd/scripts/target/at91sam7x512.cfg

https://github.com/intel/OpenOCD/tree/master/tcl/target

at9lsam7=512.cfg

Info :

Info : Li 1ing on port
Info : Li i on port
Info :

into . E C
Info : JTAG - < ev [HEe efef (mfg: (<unknown>), part: @xfefe,
Info : 2

Info : cpu: r e £ oi chpoint units

Info : fol 3

Info :

8. In order to interact with JTAG, it is necessary to connect to the running instance of Open0CD via Telnet:
telnet localhost 4uuy

9. It is now possible to issue commands to the JTAG system via OpenOCD. Refer to the OpenOCD
documentation for a full list of available commands: https://openocd.org/doc/html/General-
Commands.html

Computer
4 22N) JTAG
telnet } § / Response \ oy (SWD/SPI)
[Targer | Config y | fromtarget 2 Adapter
'/' ‘\‘ . 1 + |
':\4/,3:0“[,”,2::“5 ‘ cig ‘ files '\ log (verbose 0-3) /
— " p Detecting
Adapter dependencies T Adapter
d
gdb cfg l;:]el
Execute

- - / &

commands
on target

3\ Adapter and target

. N detected
Us'er pro'wde's (_I \ —
configuration files L ’:\6_/:’ Result of commands Target dev|ce
input $ output
Raspberry Pl, Beaglebone
User

Note: Target configuration file for device with external Flash memory
In the previous example, there is no external Flash on the PCB; indeed the firmware is stored on an internal
Flash inside the MCU (it is a bare-metal firmware). Therefore, only a configuration file specific to the MCU is
necessary in order to access this Flash memory through JTAG.
However, in many cases, there are one or more external Flash memory chips on a PCB that store the Firmware.
In such cases, it is necessary to provide a configuration file to OpenOCD that defines these external Flash chips.
In the documentation, those configurations are referred to as “board configuration files”. Some examples are
available in https://github.com/intel/OpenOCD/tree/master/tcl/board.
Basically, such a configuration is built like this:

— Include the target configuration file corresponding to the PCB’s MCU/SoC:

source [find target/mcu.cfg]

— Configure the external Flash memory chip:
set _FLASHNAME $_CHIPNAME.flash

https://openocd.org/doc/html/General-Commands.html
https://openocd.org/doc/html/General-Commands.html
https://github.com/intel/OpenOCD/tree/master/tcl/board

flash bank $_FLASHNAME <driver> <base_address> <size> <chip_width> <bus_width>
$_TARGETNAME

where:

o <driver>isthe driver that must be used by Open0OCD to access the Flash. OpenOCD supports
NOR and NAND Flash chips. To know which driver to use, you have to refer to the MCU
datasheet and to the Open0CD documentation that list all supported drivers:

= For NOR: http://openocd.org/doc/html/Flash-Commands.html#External-Flash

= For NAND: http://openocd.org/doc/html/Flash-Commands.htmI|#NAND-Driver-List
<base_address> is the address in RAM where the Flash is mapped.
<size> is the size of the chip, in bytes.
<chip_width> is the width of the flash chip, in bytes. Ignored for most MCU drivers.
<bus_width> is the width of the data bus used to access the chip, in bytes. Ignored for most
MCU drivers.

O O O O

In order to determine <base_address> and <size>, you will have to refer to the MCU datasheet and look
for the memory map.
Here is an example on the MCU AT91SAM9260:

8.2 External Memories

The external memories are accessed through the External Bus Interface. Each Chip Select line
has a 256-Mbyte memory area assigned.

Retfer to the memory map in Figure 8-1 on page 21.

So, if you refer to the memory map, you can see that the first Flash is mapped at 0x10000000, and the size
will depend on the Flash itself, with a maximum of 256 MB.

8. Memories
Figure 8-1. AT91SAM9260 Memory Mapping
Address Memory Space Internal Memory Mapping
0x0000 0000 CRO000 0000
Boot Memory (1)
Internal Memories | 256M Byles 0 0 D000
ey ROM 22K Bytes
0x1000 0000 0x10 2000
EBI e
. 020 0000
Chip Select 0 256M Bytes SRAMD 4K Bytes
Ox1FFF FFFF 0x20 1000
LLL g Resarved
EEI 030 DOOD
Chip Salect 1/ | 256M Bytes SRAMA 4K Bytes
SDRAMC 0x30 1000
0x2FFF FFFF
03000 0000 Resarved
0x50 D000
EBI UHP 16K Bytas
Chip Select 2 256M Bytes 050 4000
Ox3FFF FEEF
EBI teserved
Chip Select 3/ 256M Bytes OxOFFF FFFF
NANDFlash
0xAFFF FEFF
0x5000 0000 T
Chip Select 4/
Compact Flash | 220M Bytes
N LEE EELE w D

9.4. Firmware Extraction using JTAG

Once connected to the JTAG system, it is possible to perform memory operations. For example, to read the
memory at a specified location, you can simply use the mdw command as follows:

mdw <address> <count_dword>

http://openocd.org/doc/html/Flash-Commands.html#External-Flash
http://openocd.org/doc/html/Flash-Commands.html#NAND-Driver-List

For example, it might be useful to read sensitive information such as passwords from memory.

In order to dump the firmware stored on Flash memory (either internal or external) and mapped in RAM, you
will have to follow the process below:

1. First of all, it is needed to know the memory region in RAM where the firmware is mapped. In the
example from the previous section, the firmware is bare-metal and is stored in the internal Flash
embedded inside the MCU. The MCU’s datasheet has a section named “Memory Mapping” that
indicates the address where this internal Flash is mapped: the base address is 9x100000 and its size is

0x100000 bytes.

L[}
Figure 8-1. AT91SAM7X512/256/128 Memory Mapping
Internal Memory Mapping Note
{1} Gan be ROM, Flash or SRAM
/ 0X00000000 | Boot Memory (1) depanding on GPNVMZ and REMAP
Flash belore Remap| 1 yaytes
‘SRAM after Remap
EEE
0x0010 0000
Internal Flash ~ 1 MBYtes
OHOO1E EEE
Inlemal SRAM | MBytes
Ow002F FFF
0xD030 0000
Address Memory Space Internal ROM 1 MBytes
0x0000 0000 —_— ox003F FEF
0x0040 0000
Internal Memories | 256 MBytes Reserved 252 MByles
OXOFFF FFFF
OXOFFF FFFF _ - f System Controller Mapping
0x1000 0000
OXFFFF Fooo
| AlC 512 Byles/128 registers
‘on|u||n
Peripharal Mapping | OXEFFF F200
|| 0xFO00 0000 ‘
Resorved DBGU 512 Byles/128 registers
e —
Undefined 14 x 256 MByles ’FFFA - TCo,TC1,TC2| 16 Kbytes | OXFFFF F400
Oxi 3l
(Abort) 3584MBytes | RrrEl Sh00
Resenved PIOA 512 Bytasi28 rogistors
OXEEFA FFFF |
OxFFFE 0000 upp 16 Kbytos OXFFFF FSFF
OFFFRIFFE | oxFFFF Fooo
Oxf 4000
’ Fesend |
| ouermzres PIOB 512 Bylas/128 ragistars
OxFFFB 8000
" ™ 16 Kbytes ‘
OXEEER BFFF | T FITE
OxFFFB Cooo [~ p—res
OKEFFF FFFF - | anFFFFF%FFFF Reserved
0xF000 0000 OXFFFG0000 [ysanmo | 16 Koytes OXFEFF FBFE
GG ITE | oXFFFF FCo0
XFFFG 4000 [cpprry 16 Kbytes .
OXFFFC 7FFF | Puc 256 Bytas/ba registors.
Intemal Peripherals. | 256 MBylos OXFFFC 8000 | Pasareed ‘ OXFFFF FCFF
OGFFEG BFFF e FDoo RSTC 16 Byles/i registers
0xFFFC Cooo PWMG 16 Kbytes |
OXFFEC FFFF Reserved
OxFFFF FFEF
OxFFFD 0000 CAN 16 Kbtes OxFFFF FD20
Qe P | ocrrrrce ATT 16 Bytes/d registers
=

(For an example of memory mapping with external Flash, refer to the previous Note: Target
configuration file for device with external Flash memory).

2. Itis now possible to issue the Open0OCD command dump_image with the right parameters:
dump_image <filename> <address> <size_in_bytes>
Note that the target must be first halted using the command halt.

:~$ telnet localhost 4444

3. The firmware is finally dumped into a raw file.

6.SPI Memory
6.1. SPI Protocol

SPI (Serial Peripheral Interface) is a synchronous serial communication protocol used for high-speed inter-
component communication on a PCB, between a master component and one or more peripheral devices
(referred to as slaves). In general, the master is the MCU/SoC and the slaves can be memory chips (e.g.,
EEPROM/Flash).

SPI supports full-duplex communication, allowing data to be transmitted and received simultaneously. This is
achieved using separate data lines for each direction (MISO and MOSI).

SPI pins are:

— MISO (Master In, Slave Out) = Slave sends data to the master on this line (Slave - Master).

— MOSI (Master Out, Slave In) = Master sends data to the slave on this line (Master = Slave).

— SCLK (Clock) = This pin receives the clock signal generated by the master to synchronize data transfer.
The presence of this clock is required since SPI is a synchronous protocol.

— CS/SS (Chip Select / Slave Select) = This pin is used to enable and select a specific slave device. It is
active on low, i.e., when the received signal is 0. Only one slave can be selected at the same time, as a
consequence, only one peripheral component can receive the signal ® on CS/SS at a given time, while
all the other ones must receive the signal 1.

SCLK » SCLK
MOSI » MOSI SPI
SPI MISO |« MISO Slave
Master SS1 » 5SS
552
3353
—p SCLK
» MOSI SPI
MISO Slave
| SS
—p| SCLK
—» MOSI SPI
MISO Slave
P SS

Note: Alternative pins labels

When reading datasheets of components that can be used as a slave in SPI protocol (e.g., Flash memory), it is
common to see alternative pins labels:
— SDI / DI / DIN / SI =Those labels all refer to Data In / Slave In. So they correspond to MOSTI,
and are connected to the MOSI pin on the master.

— SDO / DO / DOUT / SO =Those labels all refer to Data Out / Slave Out. Similarly, they correspond

to MISO, and are connected to the MISO pin on the master.

SPI cs = CS SPI
Master Slave
SCLK = SCLK
MOSI = SDI
MISO SDO

Here is an example of SPI workflow:

1. First of all, the master configures the clock frequency according to the slave device’s clock frequency.

2. The master selects the slave device with which it will communicate. To do so, it sends the signal 0 to the
CS/SS line of the component to select. All the other slaves receive an idle signal (equal to 1) on their
CS/SS lines.

3. The master initiates the communication with the selected slave by sending data on the MOST line.

4. The slave receives the data on its pin labelled MOSI, or alternatively SDI / DI / DIN / SI.

5. The slave sends data to the master on the MISO line, coming out of the pin labelled MISO or alternatively
SDO / DO / DOUT / SO.

6. The master receives the data.

6.2. SPI Memory Identification

6.2.1. Using Datasheet
A lot of EEPROM/Flash memory chips are using SPI protocol to communicate with the MCU/SoC. It can be
easily confirmed by reading the datasheet. Here is an example with the Flash memory MX25L3208E. In the
“General Description” section of the datasheet of this chip, it clearly indicates that it uses SPI protocol as
shown below.

M=IC
MACRONIX

INTERNATIONAL Co., LTD. MX25L3208E

+ Status Register Feature
« Electronic Identification
- JEDEC 1-byte manufacturer ID and 2-byte device ID
- RES command for 1-byte Device ID
- REMS commands for 1-byte manufacturer ID and 1-byte device ID

HARDWARE FEATURES
+ PACKAGE
- 8-pin SOP (200mil)
- 8-land WSON (6x5mm)
- All devices are RoHS Compliant and Halogen-free

GENERAL DESCRIPTION

The device feature a serial peripheral interface|and software protocol allowing operation on a simple 3-wire bus.
€ ihree bus signals are a clock Inpu . a serial data input (Sl), and a serial data output (SO). Serial access

to the device is enabled by CS# input.

When it is in Dual Output read mode, the Sl and SO pins become SIO0 and SIO1 pins for data output.

The device provides sequential read operation on whole chip.

After having the confirmation that the chip is using SPI, it is possible to refer to the datasheet again to discover
the pinout. Every pin has a number with a label. The SPI pins can be easily identified:

— CS# corresponds to CS/SS

— S0/SI01 corresponds to MISO
— SI/SIO01 correspondsto MOSI
— SCLK has the standard label

Tip: Use the position of the circle on the chip to identify the chip orientation and the pin labelled 1 in the
diagram.

MacronNIx
INTERNATIONAL CoO., LTD.

MX25L3208E

PIN CONFIGURATIONS

8-PIN SOP (200mil)

cs# O 1. g O wvce
sorsion O 2 7 [HoLD#

we# [3 6 [0 SCLK

GND [4 5 [51100

8-LAND WSON (6x5mm)

PIN DESCRIPTION

SYMBOL

DESCRIPTION

Cs#

Chip Select

SI/SIO0

Serial Data Input (for 1 x 1/O)/ Serial Data
Input & Output (for Dual Qutput mode)

SO/SI01

Serial Data Output (for 1 x I/0)/ Serial Data
Output (for Dual Qutput mode)

SCLK |Clock Input
WP# |Write protection
HOLD# Hold, to pause the c_ievice without
deselecting the device
VCC |+ 3.3V Power Supply
GND _ |Ground

6.2.2. Using Logic Analyzer

It is also possible to identify SPI pinout using a Logic Analyzer. To do so, it is required to connect the Logic
Analyzer to the different pins of the chip. The most convenient way often consists in using chips clips for 8-pin

or 16-pin SOP packages; other methods are described in the next section.

The next picture shows an example where a Flash memory is connected to a Logic Analyzer. When the device is
powered on, the output in Salae Logic software shows that it is possible to distinguish the four lines of SPI

protocol rather easily:

— The SCLK line is the easiest to identify (here on CHO2) with a typical square waveform signal.

— The CS/SS line (here on CHOO) is active on low, i.e., when the signal has a value of 0. And when it is

active, data should be sent and/or receive on lines MISO and MOST respectively.

— TheMISOandMOSI lines are the two lines where data are transmitted when CS/SS is on low (here CHO1
and CHO2). It means that those two lines should have a changing signal when CHOO is low, and should
be idle when CHOO is high. While it should be relatively straightforward to identify the two lines,
distinguishing definitively between which corresponds to input and which to output may not be feasible
at this stage. Consequently, in the absence of a datasheet for the chip, both potential combinations

should be tested when attempting to interact with the memory chip (cf. next section).

Red cable corresponds to Pin #1

Data emitted/received

CS (Chip Select) drops to 0
when communication begins

Note: Decode SPI communication using Logic Analyzer

It is possible to decode the SPI communication using Salae Logic Analyzer software, i.e., to decode the
data transmitted over the lines MISO and MOSTI (see blue boxes next to the signals in previous screenshot): To
do so, click on the + beside “Analyzers” on the right pane. Select “SPI”. Then select the identified pins in
the dialog box (in most cases, other options should be left as the default):

Analyzer Settings

MOSI

-

MISO

-

Clock

-

)
1
2
0

Enable | 0 - 'CS' -

Meost Significant Bit First (Standard) -

8 Bits per Transfer (Standard) ~

Clock is Low when inactive (CPOL=0) ~

Data is Valid on Clock Leading Edge (CPHA = 0) ~

©= Capture Enable line is Active Low (Standard) ~

6.3. Interaction with SPI

6.3.1. Connection to Bus Pirate
When the SPI pinout is known, it is possible to interact directly with it using the Bus Pirate. The Bus Pirate will

be used as Master during SPI communication, and therefore the memory chip will be the slave in this
configuration. The connection must be done as follows:

Bus Pirate SPI component ‘
GND GND
MOSI MOSI /SDI /DI / DIN / SI
MISO MISO / SDO / DO / DOUT / SO
CLK SCLK
Cs CS/Ss
3v3 Vce

Important:

When interfacing with SPI memory, it is crucial to ensure that the device remains powered OFF. Otherwise,
communication will fail, as the Bus Pirate functions as the master while the MCU/SoC also acts as a master
when the device is powered on, causing the device to crash.

The picture below shows an example of the connection to the Flash memory MX25L3208E using an SOP8 chip
clip. Note that both Bus Pirate and Logic Analyzer are here connected to the chip clip. It is a way to debug the
whole process by checking the signals in real time when communicating with the chip.

Ry “'-

;!
.

\ Flash = Slave

So/si04

6.3.2. Connection Methods

This section lists the various possible methods to connect to a chip. The method to choose will mostly depend
on the package type of the chip.

6.3.2.1. Using Chip Clips

When the chip has a simple 8-pin or 16-pin SOP/SOIC package, the easiest method consists in using a chip clip
as shown below:

Tip: The red cable on chip clip is aimed at indicating the pin #1.

6.3.2.2.Using Test Hook Clips
Jump wires with test hook clips can be a good alternative to connect only the required pins from a given chip. It
might be difficult to place the hook correctly due to the very small pin spacing, however, once they are in place,
they tend to be solidly attached to the chip. From experience, using test hook clips tends to result in fewer
connectivity issues compared to using chip clips.

6.3.2.3.Soldering Wires in Place
Another method consists in directly soldering small wires in place, directly to the chip’s pins. The main advantage
of this method is that it does not require the right connector/socket specific to the target chip, and it is often
more reliable than chip clips for example. However, due to the small scale of the chip, it requires reasonable
soldering skills to avoid false contact and short-circuit.

6.3.2.4. Chip Removal
In last resort, if all other methods have failed or are not possible, the chip removal can be considered. The chip
removal is more often required for parallel EEPROM/Flash memory chips since a programmer with special
adapter is the best way to extract data from them (cf. 7. Parallel EEPROM/Flash).

The poor man's method to remove a chip consists in using soldering iron along with desoldering wick as shown
in the following pictures. However, it's crucial to proceed with extreme caution since the pins are delicate and
prone to breakage during this process.

Sb-wwn
Wet
YiBuan

9MNPisay i

=,
—

A preferred method consists in using a hot air gun to desolder the chip. When the package of the chip is Ball
Grid Array (BGA), all the connections are under the chip, and in this case, a hot air gun is really required and
you do not have the choice.

Whichever the chosen method and the chip type, it must be ensured that all solder has been properly removed
from the legs/pins to avoid contacts between them that could make the chip not working properly when
connected to an adapter.

Warning:
When using hot air gun to desolder the chip, you have to be careful because there is always a risk to burn the

chip if the temperature is set too high. It is recommended to avoid putting the hot air gun too close from the
chip.

Chip removal is, of course, a very invasive technique. It must be done if no other solution is possible, or at the
end of a device security assessment when PCB destruction is a risk that can be accepted. Indeed, after
desoldering a chip from a PCB, it requires a lot of skills to replace the chip back on the PCB:
— On TSOP packages, the pitch (distance between pins) is about 0.5 mm which is extremely small, this
means that the solder can easily go over multiple pins and create shorts (bridges) as shown in this
picture:

— This article also demonstrates how tedious it can be to resolder a BGA chip:
https://hackaday.com/2023/03/23/working-with-bgas-soldering-reballing-and-rework/

— Another risk with the resoldering process (but also desoldering) is possible damage to the board.
Excessive heat applied to the PCB or mishandling during manipulation can quickly result in irreversible
damage.

6.4. Firmware Extraction via SPI

When Bus Pirate has been connected to the SPI memory chip, it is possible to dump its content using the tool
flashrom, as demonstrated below:

1. Check that the target EEPROM/Flash is supported by flashrom project, on the following page:
https://wiki.flashrom.org/Supported hardware

2. Run flashrom with the following options, It should auto-detect the memory chip:
flashrom —p buspirate_spi:dev=/dev/ttyUSBO

Make sure that it corresponds to the target. If it does not detect the chip, run:

flashrom -L

This command lists all the possible chips that the Bus Pirate can communicate with by using flashrom.
Then, select the chip that corresponds to the target, for example:

flashrom -p buspirate_spi:dev=/dev/ttyUSBO -c W25Q64.V

2 MHz. Limiting speed to 2 MHz.

, SPI) on buspirate_spi.

3. Then, the content of the memory chip can be dumped by running the command:
flashrom -p buspirate_spi:dev=/dev/ttyUSBO -c W25Q64.V -r firmware.bin

https://hackaday.com/2023/03/23/working-with-bgas-soldering-reballing-and-rework/
https://wiki.flashrom.org/Supported_hardware

W25Q64.V firm.bin

on amd¥ ;
flashrom is free soft e, get the source at https://flashrom.org

y loops (clk_id: 1, resolution: 1ns).
older do support SPI speeds above 2 MHz. Limiting speed to 2 MHz.
ommende 3 2 -
Winbond flash chip "
Reading flash ... done.

4. The full dump is done inside the specified file. It is a raw binary file that contains the Firmware if the
target EEPROM/Flash is storing it (cf. 8. Firmware Reverse Engineering for further analysis), but it can
also contain other data depending on the device’s architecture (e.g., configuration data).

Important: Possible interferences with the component

Sometimes, extracting the content from a memory chip soldered on a PCB (e.g., using chip clip, test hook
clips, soldered wires as shown in previous sections) does not work and the chip is simply not detected at all
by flashrom.

rootghac /home/jbr/Projet-Netgeart# flashrom -p buspirate_spi:dev=/dev/ttyUSB@
flashrom v1 on Linux 5.4 li4-amd6d 6_64)

flashrom is free software the source code at https flashrom.org

Using cloc] _id: 1, resolution: 1ns)

Bus Pir e 6.1 and older d no SPI speeds above 2 MHz. Limiting speed t
It is T - ‘rade to firmware 6.2 or newer.

Mo EEPROM/T

Note: flashrom can never write if the flash chip isn't found automatically.

This is often caused by interferences occurring with other components of the PCB. Indeed, even if the target
device is kept powered OFF during the whole process, it is powered by Bus Pirate through Vcc pin in order to
function. Therefore, it will also power on some adjacent components on the board, that can then enter into
interaction with the target SPI chip, and as a consequence it might cause it to stop functioning properly in the
context of SPI communication with the Bus Pirate.

When you face such a problem, the workaround often consists in removing the chip as described in 6.3.2.4.
Chip Removal, with all the drawbacks this method has...

After removal, the chip can be directly connected to the Bus Pirate, and the same process described previously
can be repeated.

7.Parallel EEPROM/Flash

Some EEPROM/Flash memory chips are not using serial protocols for communication, but rather parallel
protocols with multiple 1/0 lines. Such chips have therefore much more pins/legs than traditional serial memory
chips like SPI chips. The following block diagram shows an example of NAND Flash with 8 pins dedicated to 1/0O,
so they allow for simultaneous 8-bit data transfer.

ADBUSD 19— 1fo0
ADBUS1 3 Ifo1
ADBUSZ 11— If02
ADBUS3 32 o3
ADBUSS u— Iifo4
ADBUSS a2 Ifos
ADBUSE 11— 108
FT2232H ApBus? 1 o7
ACBUSS ——————————————— 19— WP
ACBUSS : - NAND Flash
ACBUS? ——————————————— 17— ALE Memorv
BDBUS2 + RE
BDBUS3 18 WE
BDBUSE 5 CE
BDBUS? r RB
|: 12+ Ve
3 - Weo
GND 1 : :iz

There are predominantly two styles of chip packaging for parallel EEPROM/Flash:

— TSOP (Thin Small Outline Package) = These are usually 48 or 56 pins that are
very small and with very small space between each of them.

- BGA (Ball Grid Array) = These come in a vast array of different pin
configurations, and they are usually the trickiest to work with because all the
connections are under the chip, and there is no pin/leg reachable from the
external.

A common parallel protocol used by NAND Flash chips is ONFI (Open NAND Flash
Interface), but other protocols can be encountered.

Due to the complexity of parallel protocols with multiple 1/0 lines and the small
form factor of pins/legs, it is almost always required to remove the chip from the
PCB if you want to extract its content. Hot air gun should be used as shown in
6.3.2.4. Chip Removal.

7.1. Parallel EEPROM/Flash Identification

The first clue that can indicate that we are dealing with a parallel EEPROM/Flash is the chip packaging. As
shown before, if we are dealing with TSOP48, TSOP56 or a BGA memory chip, it has a good chance to be using
parallel protocol.

The next step consists in analysing the first sections of the datasheet that often give an overview of the features
and technical specification of the component. Here is an example taken from the first page of the datasheet of
the NAND Flash Micron 29F6U4GO8CBABA. It clearly indicates that it is using ONFI parallel protocol for
communication:

Micron Confidential and Proprietary Advance
Mcro n 64Gb, 128Gb, 256Gb, 512Gb Asynchronous/Synchronous NAN1
Feature

NAND Flash Memory

MT29F64G08SCBAAA, MT29F128G08C[E/FJAAA,
MT29F256G08C[J/K/IM]AAA, MT29F512G08CUAAA,
MT29F64G08CBCAB, MT29F128G08CECAB, MT29F256G08C[K/M]CAB,

MT29F512G08CUCAB
Features = Operation status byte provides software method for
detecting
+ Open NAND Flash Interface (ONFI) 2.2-compliant! — Operation completion
« Multiple-level cell (MLC) technology — Pass/fail condition
= Organization — Write-protect status
— Page size x8: 8640 bytes (8192 + 448 bytes) + Data strobe (DQ)S) signals provide a hardware meth)
— Block size: 256 pages (2048K + 112K bytes) od for synchronizing data DQ) in the synchronous
— Plane size: 2 planes x 2048 blocks per plane interface
- Device size: 64Gb: 4096 blocks; + Copyback operations supported within the plane
128Gh: 8192 blocks; from which data is read
256Gh: 16,384 blocks; + Quality and reliability
512Gh: 32,786 blocks — Data retention: 10 years
+ Synchronous I/O performance — Endurance: 5000 PROGRAM/ERASE cycles
— Up to synchronous timing mode 5 - Operating temperature:
- Clock rate: 10ns (DDR) - Commercial: 0°C to +70°C
— Read/write throughput per pin: 200 MT/s _ Industrial (IT): -40°C to +85°C
= Asynchronous [/0 performance + Package
— Up to asynchronous timing mode 5 — 52-pad LGA
— 'RC/'WC: 20ns [MIN) — 48-pin TSOP
« Array performance — 100-ball BGA

— Read page: 50ps (MAX) e ‘
_ Program page: 1300ps (TYP) Note: 1. The ONFI _2.2 specification is available at
_ Erase block: 3ms (TYP) www.onfi.org.
= Operating Voltage Range
— Vep: 27-3.6V

Ll Deil a2 o il

| Command ser: ONFINAND Flash Protacol |

— Program cache
— Read cache sequential

7.2. Dump using Commercial Memory Reader

The memory extraction of parallel EEPROM/Flash can be done using a multi-purpose commercial reader such as
RT809H. Every package type will require a special adapter. The RT809H comes with a bunch of different
adapters/sockets that are usually sufficient for most cases. Additional adapters can also be bought if needed.

LReT

The procedure for dumping the content of a memory chip using RT809H is straightforward:

1. Unsolder the chip from the PCB.
2. Find the correct adapter/socket corresponding to the chip, and place it inside. Be very careful and make
sure that the connections are perfectly done (pin #1 from the chip must be connected to pin #1 on the

adapter), otherwise it might fry the chip when powering on the programmer.

e T T T

3. Plug the adapter into the RT809H programmer. Here is an example with the NAND Flash Micron
29F6UGOBCBABA with a TSOP48 package:

4. Finally, the RT809H software can be used to perform a full memory dump after selecting the correct
chip reference as follows. Note that it can be quite long, depending on the memory size:

Hardware Hacking — Methodology & Tips 84 /103

1.3.

Fix ¢
seog

ation (P) Buffer(U) Setting (N ools (L) Help (H) Language(G) Download

File (F) Device (D) Of

Smart Identify SmartiD Auto ISP AutolSP Buffer Buffer Tool Chain Toolchain
Read Enter chip printing History
|MT29F64G0SCBABA@TSOP4E v OK

fmT2
M

OFOAGUACEABE@ | SOPAS
MT29F64G0SCBCBB@TSOP48
White MT29F 128G0SCFABA@TSOP4S
MT29F 128GOSCFABB@TSOP48
Verify MT29F 128GOSCECBB@TSOP48
MT29F256G0SCMCBB@TSOP4S
Erase c
030: Chip pins contact is detected OK
Bad biock detect 031: TotalPageNum: 0x100000,PageNuminBlock: 256.PageSize: 8936
032: Chip ID verification OK
Setting (N) 033: C:\Users\jbriDeskiop\MT29F64G0SCBABA@TSOP48_1650\MT29F64GOSCBABAE
034: Startreading chip.....
035: Buffer data checksum: 16bits_OxA4B6 £-32bits_0x0A35A4B6 :
Cancel 036: Read successful£~Elapsed time£21333 seconds;E
037: Auto verifying
9 038: 445111 bytes verification are inconsistent.

039: exceed 1 bit'5128 Check for inconsistent pages£22360 pages
040: exceed 4 bit'5128 Check for inconsistent pages£22307 pages

042: Venfication successful£-Elapsed time£%1333 seconds;f
043: Elapsed time: 2666 secondsf-~average speed of 7028673 bytes/sec
044 OK <

LCD TV tool Parameter setting Serial Print Tutonals

SN:20200910161337-051861

Dealing with Error Correction Code (ECC)

In NAND Flashes, bytes are stored, erased and modified in pages. It means that when a byte needs to be
modified, it cannot be modified directly. Instead, the memory page containing this byte must be read, the page
is then modified to change the byte, and finally the page is written back.

Moreover, NAND memoaories are prone to error, therefore an error correction algorithm is applied to all content.
It is implemented by adding spare bytes (extra space also called Out-of-Band bytes or OOB) inside the memory
to allow more data to be stored in order to ensure the integrity of saved data. This added data in spare-byte
area is called Error Correction Codes (ECC). They are computed using specific algorithms and allows the memory

controller to detect errors and fix them.
There are two different possible layouts for ECC:

— ECCis put at the end of each page.

— All the ECC are stored in one or multiple adjacent pages, typically at the end of the memory.

(I OOB

(I ooB

[00B

[ooB

[O0B

Hardware Hacking — Methodology & Tips

85/103

It is important to note that the image produced by the RT809H programmer (cf. previous section) depicts the
content of the flash memory in its purest state, without any filtering. This means that the ECC (Error-Correcting
Code) bits are included. For example, the effective storage size of the NAND Flash previously dumped is 8 GB,
however the resulting full memory dump produced by the programmer has a size of 8.8 GB, proving that those
spare bytes are included:

MT29F64GO8SCBABAQTSOP48 1650.bin

-rwxrw-rw- 1 jbr jbr 8.8G Sep 20 14:39 MT29F64GOSCBABAQTSOP48_1650.bin

Furthermore, an entropy analysis of the dump using binwalk -E shows that there are repeated memory
regions with very high entropy, indicating probable locations of ECC. A hexadecimal analysis using hex editor can
also be performed.

MT29F64COBCBABAQITSOP48 165@.bin
{EXADECIMAL ENTROPY

) Rising opy
9x600000 Falling entropy edg

20000
00000
00000

Rising e

Falling

EQQO00O
\000000
6ACO0000
6ADO0000

Therefore, if you want to analyse properly the content of the dump (e.g., extract filesystems), it is necessary to
first remove the ECC. To do so, it is required to refer to the Flash’s datasheet to know the technical specifications
related to the memory layout of the target chip. For example, the datasheet of the NAND Flash Micron
29F6LUGOBCBABA gives the following information:

NAND Flash Memory

MT29F64G08S8CBAAA, MT29F128G08C
MT29F256G08C[J/K/M]AAA, MT29F51
MT29F64G08CBCAB, MT29F128G08CE
MT29F512G08CUCAB

Features

= Open NAND Flash Interface (ONFI) 2.2-compliant!
« Mylrinle-level cell (MUC technolooy
« Organization
— Page size x8: 8640 bytes (3192 + 448 hytes)
— Block size: 256 pages (2048K + 112K bytes)
— Plane size: 2 planes x 2048 blocks per plane
— Device size: 64Gh: 4096 blocks;
128Gb: 8192 blocks;
2560Gb: 16,384 blocks;
512Gb: 32,786 blocks

Here, a total page size is 8640 bytes with 8192 bytes of data, and an ECC stored at the end of each page in
OOB of size 4d8 bytes. Knowing this crucial information, a simple Python script can be developed to remove
this OOB data from the raw dump:

import sys

PAGE, OOB = 8192, 448

BLOCK = PAGE + OOB

orig dump = (sys.argv[1l], 'rb"). O
out_dump = (sys.argv[2], 'wb")

nblocks = ((orig_dump) / BLOCK)
for i in (nblocks):
out_dump. (orig_dump[i*BLOCK:PAGE])
out_dump.
orig_dump.

The problem with such simple script is that it does not use ECC when generating the cleaned dump, and
therefore the resulting dump is prone to errors. To overcome this issue, there are more complete tools such as
nand-dump-tools (https://github.com/SySS-Research/nand-dump-tools) that can create error-corrected data
dumps.

Note:
Dealing with ECC on NAND Flash memories can pose challenges due to the various implementations by
different manufacturers. As a result, standard tooling may not always provide out-of-the-box compatibility,
and encountering edge cases is not uncommon. Below are some references that can help:
— https://lucasteske.dev/2024/01/decoding-and-analysis-nand-flash
— https://www.blackhat.com/docs/us-14/materials/us-14-Oh-Reverse-Engineering-Flash-Memory-
For-Fun-And-Benefit-WP.pdf
— https://conference.hitb.org/hitbsecconf2019ams/materials/D1T3%20-
%20How%20t0%20Dump,%20Parse,%20and%20Analyze%20i.MX%20Flash%20Memory%20Chips%2
0-%20Damien%20Cauquil.pdf

https://github.com/SySS-Research/nand-dump-tools
https://lucasteske.dev/2024/01/decoding-and-analysis-nand-flash
https://www.blackhat.com/docs/us-14/materials/us-14-Oh-Reverse-Engineering-Flash-Memory-For-Fun-And-Benefit-WP.pdf
https://www.blackhat.com/docs/us-14/materials/us-14-Oh-Reverse-Engineering-Flash-Memory-For-Fun-And-Benefit-WP.pdf
https://conference.hitb.org/hitbsecconf2019ams/materials/D1T3%20-%20How%20to%20Dump,%20Parse,%20and%20Analyze%20i.MX%20Flash%20Memory%20Chips%20-%20Damien%20Cauquil.pdf
https://conference.hitb.org/hitbsecconf2019ams/materials/D1T3%20-%20How%20to%20Dump,%20Parse,%20and%20Analyze%20i.MX%20Flash%20Memory%20Chips%20-%20Damien%20Cauquil.pdf
https://conference.hitb.org/hitbsecconf2019ams/materials/D1T3%20-%20How%20to%20Dump,%20Parse,%20and%20Analyze%20i.MX%20Flash%20Memory%20Chips%20-%20Damien%20Cauquil.pdf

8.Firmware Analysis and Reverse Engineering
8.1. Filesystem Extraction

After extracting a Linux-based Firmware from an embedded device using any of the techniques provided in
this guide, the next step is to identify the filesystem(s) in use and to extract it/them.

Common filesystems for embedded devices are:

— SquashFS=Itisacompressed read-only filesystem commonly used in Linux-based Firmware. It provides
a good flexibility because it supports creating writable overlay filesystems, allowing changes to be made
to the filesystem at runtime.

— CramFS (Compressed ROM Filesystem) = Simple read-only filesystem, that supports compression.

— ROMFS (Read-Only Memory Filedystem) = Simple filesystem that is strictly read-only, and do not provide
compression support.

— YAFFS/YAFFS2 (Yet Another Flash Filesystem) = This filesystem is specifically designed for NAND Flash
memory. In particular, it incorporates ECC management for ensuring data integrity. Filesystem integrity
is also maintained by storing metadata redundantly.

- JFFS/JFFS2 (Journalized Flash Filesystem) = This filesystem is also designed for NAND Flash memory.
JFFS utilizes a journaling mechanism to track changes to the filesystem, ensuring data consistency and
integrity even in the event of sudden power loss or system crashes. It also supports ECC.

— UBIFS (Unsorted Block Image Filesystem) = UBIFS is a successor to JFFS2 and is optimized for NAND
flash memory. It offers improved performance, reliability, and scalability, with features such as
compression, encryption, and fast mounting. UBIFS supports multiple partitions.

The tool of choice here is binwalk (https://github.com/ReFirmLabs/binwalk) that is able to detect and extract
most filesystems, embedded files and other data structures from a raw memory dump. This tool also supports
recursive analysis, which is a very convenient feature when extracting a file system, since it permits to extract
all the files it contains.

Warning: False positives

Binwalk scans the input raw binary file for known file and filesystem signatures, magic numbers, and other
patterns indicating the presence of embedded data. Due to this design, it is inherently susceptible to incorrect
detections.

8.1.1. Automatic Filesystem Extraction Using Binwalk
Here is an example of automatic filesystem extraction from a raw memory dump using binwalk —e. The output
from the tool gives all the embedded files/filesystems/data detected inside the file, and it automatically extract
them recursively inside an output directory.

% binwalk -v flashdump.bin

flashdump.bin

According to binwalk output, the content extracted from memory chip has a standard organization:

1. U-Boot Bootloader data.

https://github.com/ReFirmLabs/binwalk

2. Initial filesystem used by the Kernel (compressed using LZMA): This is required for loading device drivers
and other hardware specific utilities before the root filesystem has been mounted. Note that some
devices, however, use this kernel initial filesystem as their only filesystem.

3. Root filesystem: This is the main filesystem, which is here based on SquashFS, compressed using LZMA.

4. Configuration data

Note: Entropy variations

it is also possible to inspect the overall entropy variation of the raw dump using binwalk -E asshown below.
In particular, large memory regions appears with very high entropy, close to 1. 0, that indicate almost random
binary data. Those regions actually correspond to compressed data, including the SquashFS filesystem that
is compressed using LZMA algorithm according to previous screenshot.

$ binwalk -E flashdump.bin

DECIMAL ENTROPY

lling entropy

Figure 1

Entropy

o 1

€/ H Q=

All the extracted files/filesystems can be found in the output directory. The most interesting for us is the
directory “squashfs-root” that contains the whole root filesystem, i.e., the filesystem used by the Linux-based
firmware of the device.

$ cd squashfs-root/
$ 1

efault_language version
shdump.bin

TLlasnaump
dump.bin

module_name

t
d
d
d

Note that binwa'lk is often unable to tell how long an extracted file is, so it might only remove the extraneous
bytes before the magic bytes but leaves all trailing garbage data, this can result in a lot of disk space being used

up.

Tip: A surprising alternative to binwalk that can parse a raw binary file and extract many file
types/filesystems is 7zip for Windows. It is particularly efficient with SquashFS.

8.1.2. Manual Filesystem Extraction
In an ideal world, binwalk would be sufficient to do all the job, but it is possible to come across more exotic
cases where the tool does not manage to detect the filesystem(s) or it makes incorrect detections. In such
scenario, it is required to get our hands dirty by doing manual extraction. The process will involve to first identify
the filesystem by performing a hex analysis of the dump, and then specific commands and tooling will be used
to extract and possibly decompress/decrypt the filesystem.

Here is an example of manual extraction of a SquashFS filesystem:

1. Look for the string “hsqs” (or other alternatives, see table below) inside the memory dump to identify
the presence of SquashFS. The position of the character “h” indicates the offset of the beginning of the
filesystem inside the firmware.
hexdump -C firmware.bin | grep -i ¢hsqs’

2. Extract it with dd:

dd if=firmware.bin bs=1 skip=<offset> of=filesystem.bin

3. Decompress SquashFS:

unsquashfs filesystem.bin

The tool to use to unpack files from extracted filesystem depends on the context. The next table sums up the
magic strings/numbers to look for identification along with the tools you can use:

Filesystem RO/RW Magic Tool
SquashFS RO sqsh, hsqs, gshs, sqgsl unsquashfs, 7zip
JFFS(2) RW 0x07C0 (v1), 0x72b6 jefferson
(v2)
YAFFS(2) RW 0x5941ff53 unyaffs
CramFS RO 0x28cd3du5 uncramfs, 7zip
UBIFS RW 0x06101831 ubi_reader
RomFS RO 0x7275
CPIO RO “Q70707” cpio, 7zip

Tip: SquashFS is one of the most popular filesystems for embedded devices, and manufacturers have created
custom versions over the years. Therefore, it is possible that standard tooling is not working properly when
attempting to decompress a SquashFS filesystem. If the tools specified previously does not work, you can try
with Firmware ModKit that implements many variations: https://github.com/rampageX/firmware-mod-
kit/wiki

8.1.3. When no Filesystem is Found
Sometimes, it is not possible to identify and to extract any filesystem by following the previous steps. In this

case, you should first inspect the raw image deeper, by leveraging utilities such as:

- file

- strings (do not forget to check for all encodings: —e s/S/1/L/b/B)
- hexdump -C <bin>

- fdisk -lu <bin>

https://github.com/rampageX/firmware-mod-kit/wiki
https://github.com/rampageX/firmware-mod-kit/wiki

Finally, if nothing gives any useful data; it probably means that you are facing any of the followings:

— The firmware is bare-metal (cf. 8.4. Loading Bare-Metal Firmwares in IDA),
— The firmware is RTOS-based with a custom filesystem,
— The image is fully encrypted (this can be usually confirmed via entropy analysis).

8.2. Filesystem Analysis
On Linux-based firmwares, after extraction of the filesystem, the first thing to do is a global search for interesting
files and data, such as:

— Hardcoded credentials: usernames, passwords, private keys, ...

— Hardcoded API endpoints and keys,

— Network information: IP addresses, ports, URLs, ...

— Private keys

— Source code: uncompiled code and scripts

— Configuration files

- /etc/passwd and /etc/shadow files: try to crack the passwords using john.

— Services-related files: check the presence of common services’ binaries and configurations.

— All binaries: list all binaries available on the filesystem and try to get their version numbers. Check for
publicly disclosed vulnerabilities (CVE) for each binary. Tools like cve-bin-tool
(https://github.com/intel/cve-bin-tool) can help to automate this task.

- Firmware upgrade mechanism.

Many tools can assist in doing this job, for example:

— Firmwalker - https://github.com/craigz28/firmwalker

— DumpsterDiver - https://github.com/securing/DumpsterDiver

— LinPEAS - https://github.com/carlospolop/PEASS-ng

- Firmware Analysis and Comparison Tool (FACT) - https://github.com/fkie-cad/FACT core
- FwAnalyzer - https://github.com/cruise-automation/fwanalyzer

The next step will be to locate exactly the binaries that are specific to the target device and that implement the
various features it provides, in order to get a closer look at them and to search for vulnerabilities. Of course,
binary static analysis is likely to be time-consuming since analysing compiled binaries will involve disassembling
and real reverse engineering (cf. 8.5. Simple Binary Reverse Engineering Example). It is crucial to maintain focus
on your objectives and what you seek to achieve when delving into reverse engineering of a binary; otherwise
you are likely to get lost when facing the huge amount of low-level information to process. However, sometimes,
it can be easier to perform dynamic analysis of binaries instead of static analysis, in order to be able to analyse
the behaviour of the binary at runtime using a debugger.

8.3. Firmware Emulation
The idea is to emulate either the full system or just a target binary to search for vulnerabilities using dynamic
analysis. Usually, the target device has not the same architecture as the hacker’s computer; therefore it is
necessary to first emulate the target’s architecture to be able to run the target’s Firmware or any of its binary.

Before all, it is thus required to know the target’s architecture and endianness (little-endian or big-endian). It
can be done by several ways, one of the easiest simply consists in using the file command on any binary
available in the extracted filesystem (e.g., BusyBox). For example:

— For a MIPS architecture with big-endian byte ordering:

$ file ./squashfs-root/bin/busybox

https://github.com/intel/cve-bin-tool
https://github.com/craigz28/firmwalker
https://github.com/securing/DumpsterDiver
https://github.com/carlospolop/PEASS-ng
https://github.com/fkie-cad/FACT_core
https://github.com/cruise-automation/fwanalyzer

./squashfs-root/bin/busybox: ELF 32-bit MSB executable, MIPS, MIPS32 rel?

version 1 (SYSV), dynamically linked, interpreter /lib/ld-uClibc.so.O0,
stripped

— For ARM architecture with little-endian byte ordering:

$ file ./squashfs-root/bin/busybox
./squashfs-root/bin/busybox: ELF 32-bit LSB executable, ARM, EABI5 version 1

(SYSV), dynamically linked, interpreter /lib/ld-musl-armhf.so.l, no section
header

8.3.1. Binary Emulation
The emulation of a single binary can be done using QEMU (https://github.com/gemu/gemul). It is capable to
emulate both MIPS and ARM architectures. Its installation is straightforward:

sudo apt—-get install gemu gemu-user gemu-user-static gemu-system—arm qemu-system-
mips gemu-system-x86 gemu-utils gemu-system gemu-user gemu—efi-aarchéu

Then, the QEMU binary to use will depend on the identified target’s architecture and endianness:

- gemu-mips = for 32-bit big-endian MIPS binaries.

- gemu-mipsel = for 32-bit little-endian MIPS binaries.

- gemu-mips6U = for 64-bit big-endian MIPS binaries.

- gemu-mipselel = for 64-bit little-endian MIPS binaries.
— gemu-arm = for 32-bit little-endian ARM binaries.

— gemu-armeb = for 32-bit big-endian ARM binaries.

For example, to emulate a 32-bit big-endian MIPS binary, run the following command:

gemu-mips -L ./squashfs-root/ ./squashfs-root/bin/1s

8.3.2. Full System Emulation
Sometimes, the emulation of the whole Firmware is interesting. It can indeed be interesting to have all the
services provided by the embedded device to be running in an emulated environment. Of course, some
components of the firmware are likely to not work properly since no access to the appropriate hardware is
accessible inside such an environment. However exposed services such as web dashboard, command-line
interface (via SSH/Telnet) or others should be running fine.

It can therefore allow for exploitation attempts on a live system with the possibility to perform runtime analysis
in parallel, to check debug logs, to run binaries under debugger, to see kernel messages, etc.

There are some tools, usually based on QEMU, that facilitate the emulation of the complete Firmware:

- Firmadyne - https://github.com/firmadyne/firmadyne
- Firmware Analysis Toolkit - https://github.com/attify/firmware-analysis-toolkit

8.4. Loading Bare-Metal Firmwares in IDA
Bare-metal firmwares run directly on the hardware without an operating system. They are directly stored on the
non-volatile memory embedded inside the MCU. Such firmware does not have any kernel and filesystem; it is
just one single binary running on the MCU that is interacting directly with the hardware/peripherals without
using any intermediary (e.g., device drivers) like in a typical operating system.

https://github.com/qemu/qemu
https://github.com/firmadyne/firmadyne
https://github.com/attify/firmware-analysis-toolkit

Analyzing bare-metal firmware is significantly more challenging compared to Linux-based firmware, as there
are no workarounds available. It invariably requires reverse engineering using tools such as IDA or Ghidra.

In order to load bare-metal firmwares in IDA, some information about it is needed:

Architecture,

Endianness,

Load/base address (address where the firmware is supposed to be loaded in memory),
Entry point.

Below are some explanations about the process to follow:

1.

3.

In order to identify the architecture type (ARM, MIPS, ...) of the firmware, you can use the command
binwalk -opcode that scans the provided file for common executable opcode signatures. As always,
it is prone to false detection but will often do the job, like in this example where it detects that the dump
of Proxmark3’s firmware has an ARM architecture:

L

DECIMAL HEXADECIMAL DESCRIPTION

ARM instructions, function prolo
ARM inst tions, function
ARM inst tions, function
ARM instructions, function

This information can be confirmed from the specification of the MCU where the firmware is running, so
you should also refer to the datasheet.

Then, to identify the endianness (based on heuristics), you can use the tool binbloom
(https://github.com/quarkslab/binbloom). In this example, it is 32-bit little-endian ARM:

Now, you can begin loading the firmware inside IDA by selecting the identified architecture and
endianness, as follows:

W Load a newfile X

alphab
alphal

ad218x

kr1878

Loading segment 0 00 _ Kernel options 1 Kernel options 2 Kernel options 3

Loading offset O 0000 « Indicator enabled

Options

AT group
imports segment

Cancel Help

https://github.com/quarkslab/binbloom

4,

re 8-1. SAM7S512/256/128/64/321/32/161/16 Memory Mapping

0x0000 0000

OXDFFF FFFF
0x1000 0000

Then, IDA asks for information about the memory organizationi.e., the ROM and RAM section addresses
and sizes. This information can be found inside the “Memory Mapping” section of the MCU’s datasheet.
For instance, if we take the MCU AT91SAM7S512 from where the Proxmark3’s firmware has been
extracted using JTAG (cf. procedure in 5.3. Interaction with JTAG and 5.4. Firmware extraction using
JTAG), we must set in IDA the configuration detailed in the next screenshot based on the data extracted
from the documentation. Note that the ROM section corresponds to the mapping of the non-volatile
memory that stores the firmware internally, i.e., the “Internal Flash”:

“ Disassembly memery organization

Internal Memory Mapping Note:
(1) Can be Flash or SRAM
0000 0000 depenting on REMAS

4
Flash bedore Remap

1 MBytes
SRAM after Remap)

OxD00F FFF

Internal Flash 1 MBytes

O
x0020 0000

Intermal SRAM] 1 MEytes
Qx002F FFF
Address Memory Space
Reserved 253 MEytes
Internal Memories | 256 MBytes
Input file
OROFFF FFFF Loading
_
Sysiem Controller Mapging
OxFFFF FOOO e database using the
512 Bytes/
Peripheral Mapping NG 128 registers e Lo d.
FOD0 0000
R — QxFFFF FIFF - —
Undefined 14 x 256 MBytes OxFFFF F200 0K Cance!
(Abort) 3584 MBytes | GuFEFS FEEF
TCo, 761, TC2 | 16 Koytes peeu | 512 Byl
FFFA 3FFF 128 registers
FFFA 4000
Ressred QxFFFF F3FF
O4FFFA FFFF 16 Kiytes EFFF A0
s oo [~ o | RIS von |sizove
i 104 - .
ETF SAMTSI2/18) 128 registers
Ressred
Jo— g e
 — E—

Note: When memory mapping in unavailable

If the datasheet is not available, and there is no easy way to know the base address of the firmware, the tool
binbloom can assist to give the best candidates by scanning the image and using several heuristics. Technical
information about how this tool works is available at: https://blog.quarkslab.com/binbloom-blooms-
introducing-v2.html and https://www.sstic.org/2022/presentation/binbloom v2/.

In the section “Input file”, we must put the “Loading address” of the raw image we are loading
in IDA. Since the image is a full dump of the internal Flash, it means that it is mapped at the beginning
of the ROM section, and therefore we must simply put the same address as the ROM start address (here
0x100000). If for any reason, you have made a dump starting at a specific offset inside ROM, you should
add this offset to the ROM start address in order to calculate the loading address.

Some warnings are then usually displayed by IDA:
- With ARM, it is possible to see a message regarding the detection of ARM Thumb instructions:
refer to the Note section below.
— A message indicating that the entry point is not known: this is normal since a bare-metal
firmware is a raw binary file without a well-known structure such as PE files or ELF files that have
known fields indicating the address of the entry point.

https://blog.quarkslab.com/binbloom-blooms-introducing-v2.html
https://blog.quarkslab.com/binbloom-blooms-introducing-v2.html
https://www.sstic.org/2022/presentation/binbloom_v2/

¥ Information X

You have just loaded a binary file.

IDA cannot identify the entry point automatically as
there is no standard of binaries.

Please move to what you think is an entry point
and pri C' rt the autoan

B Don't display this

Note: ARM Thumb

In the context or ARM architecture in embedded devices, it is common to encounter ARM “Thumb” which has
a compressed instruction set compared to standard ARM architecture: it is a subset of the regular ARM
instructions, that are all only 16-bit long. You must refer to the MCU datasheet to check it ARM “Thumb” is
used.

Features

* Incorporates the ARM7TDMI® ARM® Thumb® Processor
= High-performance 32-bit RISC Architecture
— High-density 16-bit Instruction Set

When ARM “Thumb” code is detected by IDA when loading an image, it will display this pop-up:

® Information X
ARM AMD THUMB MODE SWITCH INSTRUCTIONS
instruction encodin nd THUME.
pecify the encoding mode fo ngle instruction.
virtual r r 1. If €l o, then
can change the f the ter T using

the 'change segment reg value' command
(the canonical hotkey i

B Don't display thi

When ARM “Thumb” is used, you have to switch between regular ARM instructions and Thumb instructions
in IDA after loading the firmware. To do so, go to the base address and press ALt+G, then set the value 0x1
in the “Segment Register Value” pop-up. To confirm the change, the note “CODE16” will replace
“CODE32”:

M Segment Register Value X

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

7. The next step is to find the entry point of the firmware. This task can be tricky and depends on the
architecture and processor. A common way to find the address of the entry point is to refer to the “Reset
vector” in the “Interrupt Vector Table”. This is the address from which the CPU will start executing code

when the device is reset. The address of the table and the offset of the “Reset vector” inside this table
depends on the CPU. Therefore, you will again have to search this information in the datasheet.
Nevertheless, on many ARM configurations, the table is located at address 0x0 and the “Reset vector”
is the second element in this table, and therefore located at address Ox4.
For more information about this, refer to these links:
— Video demonstrating how to find the entry point in ARM firmware -
https://www.youtube.com/watch?v=V6ZySLopflk

- Another example on how to load bare-metal ARM firmware -
https://www.pentestpartners.com/security-blog/how-to-do-firmware-analysis-tools-tips-and-
tricks/

When the entry point is found, jump to it in IDA, and press the key “C” to start disassembling.

8. You will see that IDA has successfully disassembled the functions as shown below (functions are listed
in the left pane):

IE maviewr B B Hexview-

9. A last important point to mention is the fact that bare-metal firmwares are communicating directly to
hardware components through specific memory addresses. The memory mapping in the MCU’s
datasheet should give the details about the memory ranges corresponding to the various peripherals.
For example, the MCU AT91SAM7S512 reserves the range OxFOOOQEEEO-OxFFFFFFFF for
communication with peripherals. This range is split in multiple sub-ranges that correspond to different
peripherals, as shown below. In the datasheet, there is also a table explaining the mnemonics used:

Hardware Hacking — Methodology & Tips 96 /103

https://www.youtube.com/watch?v=V6ZySLopflk
https://www.pentestpartners.com/security-blog/how-to-do-firmware-analysis-tools-tips-and-tricks/
https://www.pentestpartners.com/security-blog/how-to-do-firmware-analysis-tools-tips-and-tricks/

OXEFFF FFFF
0xFO00 0000

OxFFFF FFFF

Peripheral Mapping

System Controller Mapping

0xF0O0 0000
Undefined 14 x 256 MBytes Reserved
(Abort) 3.584 MBytes %xll::':Fll::?\'f]EEg
x TCO, TC1, TC2 | 16 Kbytes
O0xFFFA 3FFF
OxFFFA 4000
Reserved
OxFFFA FFEF
0xFFFB 0000 16 Kbytes
OXFFFB 3FFF uer (Reserved on
X1
0xFFFB 4000 SAM7532/16)
Reserved
BiFrre oo
x|
TWI 16 Kbytes
OxFFFB BFFF
0xFFFB C000
Reserved
0xFFFB FFFF
OxFFFC 0000 | e arTo | 16 Kbytes
0xFFFC 3FFF 16 Kbytes
Internal Peripherals | 256M Bytes 0xFFFC 4000
P v USART1 (Reserved on
0xFFFC 7TFFF SAM7S32/16)
0xFFFC 8000 | Reserved
OxFFFC BFFF
OxFFFCCO00 | pwmc | 16 Kbytes
OxXFFFC FFFF
OxFFFD 0000 [oo
BFFFD %ooo
x|
ssC 16 Kbytes
0xFFFD TFFF
0xFFFD 8000 ADC 16 Koytes
OxFFFD BFFF
0xFFFD C000
Reserved
OxFFFD FFFF
OxFFFE 0000 Pl 16 Koytes
OxFFFE 3FFF
0xFFFE 4000
Reserved
0xFFFF EFFF
0xFFFF F00O svsC

OxFFFF FFFF

OXFFFF F000
AlC
OXFFEF FIFF
OXFFFF F200
DBGU
OXFFFF F3FF
OxFFFF F400
PIOA
OXFFFF F5FF
OXFFFF F60D
Reserved
OXFEFF FBFF
OxFFFF FCOO
PMC
OXFFFF FCFF
0xFFFF FDOO
OXFFFF FDOF RSTC
Reserved
OxFFFF FD20
OXFFFF FC2F RTT
OxFFFF FD30 o
OXFEFF FC3F
OxFFFF ED40 e
OXFFFF FD4F
Reserved
OxFFFF EDGO
oxrrrFFcer | VREC
OXFFFF FO70 [~
OXFFFF FEFF seme
OXFFFF FFO0
e
OXFFFF FFFF

512 Bytes/
128 registers

512 Bytes/
128 registers

512 Bytes/
128 registers

256 Bytes/
64 registers

16 Bytes/
4 registers

16 Bytes/
4 registers
16 Bytes/
4 registers
18 Bytes/
4 registers

4 Bytes/
1 register

256 Bytes/
64 registers

Therefore, in order to make reverse engineering of the firmware more convenient and to be able to
quickly see if a memory address used inside an instruction is referring to a peripheral (which would mean
that the firmware is accessing/using a hardware component), it is recommended to add the memory
mapping of peripherals inside IDA. This can be done by creating memory segments via Edit >
Segments > Create segment. For every peripheral, a segment should be created by specifying its

10.2 Peripheral Identifiers

The SAM7S Series embeds a wide range of peripherals. Table 10-1 defines the Peripheral Identifiers of the

SAM7S512/256/128/64/321/161. Table 10-2 defines the Peripheral Identifiers of the SAM7S32/16. A peripheral identifier

is required for the control of the peripheral interrupt with the Advanced Interrupt Controller and for the control of the

peripheral clock with the Power Management Controller.

Table 10-1. Peripheral Identifiers (SAM7S512/256/128/64/321/161)

Peripheral Peripheral Peripheral External
1D Mnemonic Name Interrupt
0 AIC Advanced Interrupt Controller FlQ

1 sysc!” System

2 PIOA Parallel I/0 Controller A

3 Reserved

4 ADC!" Analog-to Digital Converter

5 SPI Serial Peripheral Interface

6 uso USART 0

7 us1 USART 1

8 SSC Synchronous Serial Controller

9 TWI Two-wire Interface

10 PWMC PWM Controller

" ubpP USB Device Port

12 TCO Timer/Counter 0

13 TC1 Timer/Counter 1

14 TC2 Timer/Counter 2

15-29 Reserved

30 AIC Advanced Interrupt Controllen IRQO

31 AIC Advanced Interrupt Controller IRQ1

name, start address and end address.

“ Create a new segment >

Start address and end add ould be valid.
End addr Start address

SFI

Start address OxFFFEDQOD C-notation:

End ad DXFFFE3FFF s

in paragraphs

@ 15-bit segment

* 32-bit segment

8.5. Simple Binary Reverse Engineering Examples
Binary reverse engineering is a whole other topic and a full methodology is out-of-scope of this guide. Skills
involved will also depend on the architecture of the targeted embedded device. Keep in mind that decompilers
provided by IDA or Ghidra (generating pseudo-code C from assembly) can be a great help throughout the
reverse engineering process to speed it up.

8.5.1. Discovery of a Backdoor Command
This example is taken from a Go binary discovered on a network device with a Linux-based firmware. This binary

was set as the default shell for the standard user used when starting the device. As a consequence, it was
providing a restricted shell (restricted CLI) with a predefined list of available commands to the end users that
connect to the device using a Telnet/SSH service or using UART. The supported commands were listed in the
official documentation. However, when opening the binary in IDA, the list of functions was giving some hints
that a “secret” command was also actually supported:

Function name Segment

()

ptr_secre
ptr_seget I

crypto
crypto
crypto

jd cypto
crypto
caypto_t

7]
=
E

In particular, after some analysis, it appears that the function ***_commands__ptr_secret_IsMatch is
checking if an input is equal to the string “support” (the check is done in three steps: 1 dword, 1 word and 1
byte). The ASM code responsible for this check can be seen in the red box in the following screenshot from the
IDA disassembler.

Therefore, it can be deduced that this function is used to check if the user has issued the command “support”
in the CLI. This command is not mentioned in the official documentation or in the “help” message (that lists
all the supported commands). Thus, it seems like it is a secret command.

commands. (*secret).IsMatch

commands__ptr_secret_IsMatch

_commands__ptr_secret_IsMatch end

cmp £
jnb loc_7EFF43

(all e 5= (il e 5=

mov .

shl loc 7EFF43:

mov s [1 || call runtime_panicindex
mov []

L

cmp

jnz

all s =]
cmp [rbx].
jnz loc_7EFF2B

(all i =
emp [rbx+2],
jnz loc_7EFF24

[l s = P =N .] FEE
cmp [rbxes],
setz loc_7EFF24: loc_7EFF2B: loc_7EFF32: loc_7EFF39:
xor E xor 5 xor 5 mov
jmp loc_7EFE85 jmp loc_7EFE8S jmp loc_7EFEBS xor c
jmp loc_7EFE8S

When analyzing the cross-references of this function, it appears that there exists an array of pointers containing
its address. This array is labelled ***_commands_secret_comma__ptr_mdr_Node and it is referenced in the
function ***_commands_init_ializers which is the first main big function in charge of handling the user
input from the CLI. It confirms that the function is taking the command issued by the CLI user as input.

Hardware Hacking — Methodology & Tips 99 /103

& View-A, IDA View-F, IDA View-E, IDA View-D, I
fsto m - rLcommands_secret_comma_ptr_kmdr_Node
i IDA View-A

Directio Type |Address Text

Up o 7 ilea rox, _commands_secret_comma__ptr_km
EEo. .itablink:00000000009E6BD0 dq offset go_itab__ptr_commands_secret_comma__ptr_kmc

Line 1 of 2

Cancel Search Help
_ccn'n'ands_sec’e':_cc:r:l_';_pg’_m'd’_ncde I RTYPE_kmdr_Node
q offset RTYPE_commands_secret

commands__ptr_secret_Complete
commands__ptr secret_Debughame
commands__ptr_secret_GetChildren
«commands__ptr_secret GetText
. commands__ptr_secret IsMatch
go_itab_ ptr_kais e = Moz

A further analysis shows that if the input command is “support”, then the function
*%%_commands_doSupport is called, as shown below:

cmp ord [1.
Jnz a

FEIE FIE = I I
cmp byte ptr [rbx+6],
setz loc_7EFF24: loc_7EFF28: loc_7EFF32:

xor . xor .

jmp loc_7EFESS jmp loc_7EFESS

, RTYPE_map_string_interface_
+35h+ 1. 5 __inted
[rsp+38h+: 1, 5 __inte4
» 2013456Bcflmnop+

+38h+ 1. ; __inteq
[+38h+ 1. ; int64
runtime_mapassign_fasts

FEE]
: commands_dosupport

loc_7EFF12:

Tea r 421
lea r _ " ey = _g_ _g_commands_doSupport
call runtime_gcliriteBarrier ; Ends calling _ _commands_doSupport

The function ***_commands_doSupport is therefore handling the secret command “support”. This is an
interesting discovery that should be investigated deeper during a security assessment, since it might lead to root
shell access or another high-privileged feature, depending on its implementation.

Hardware Hacking — Methodology & Tips 100/ 103

8.5.2. Discovery of a Command Injection Vulnerability (Restricted Shell
Bypass)

This second example is taken from the same Go binary as before. As a remainder, this binary is implementing a
restricted shell; therefore an attacker would be interested in finding a way to bypass the restrictions enforced
and to be able to run arbitrary command on the underlying system. Usually, the first step is to get a quick look
at the strings embedded in the binaries. More precisely, it can be relevant to look at the strings referring to
binary paths. A first idea can be to look at strings containing “bin/” since it is a well-known folder storing most
of the binaries on the system:

S o
B o
[
5]
5]
[
[+
(4]
n.
=
5]
o

In particular, the red box in the previous screenshot highlights the presence of command lines with the format
specifier %s (type string). By looking at references of these strings in IDA, it is possible to easily locate the
disassembled code responsible for building and executing this command. These interesting strings are
referenced by the function named ***_clisys_DumpBfdStatus, which permits to deduce to which CLI
command it is related to.

Such disassembled code can be boring to read, so the IDA decompiler can come to the rescue and be used
to generate the corresponding pseudo-code C, as shown below:

dSelector);
ERTYPE_ ptr_clis

vAl, 1LL, 1LL});

It shows more clearly that the value passed as a parameter of the vulnerable CLI command is directly inserted
into the command line (at the location of the format specifier %s) without prior sanitization or filtering. The
command is then executed right after. Therefore, it is possible to abuse the CLI command to execute any arbitrary
command on the underlying Linux system (via /bin/bash), by injecting it inside one of the vulnerable options.
This vulnerability was exploited in 4.6.3. Post-Boot Exploitation: Restricted Shell.

References

— Hardware Hacking 1-01 — Training BT by Team R.E.S.T.A.R.T.

-~ Practical loT Hacking: The Definitive Guide to Attacking the Internet of Things — No Starch Press (2021)

— loT Penetration Testing Cookbook — Packt Publishing (2017)

- https://www.synacktiv.com/publications/i-hack-u-boot

- https://cybergibbons.com/hardware-hacking/recovering-firmware-through-u-boot/

- https://docs.u-boot.org/

— https://blog.nviso.eu/2020/02/21/iot-hacking-field-notes-1-intro-to-glitching-attacks/

— https://optivstorage.blob.core.windows.net/web/file/55e86eae3f04450d9bafcbb3a94559ca/JTAG.Wh
itepaper.pdf

- https://sergioprado.blog/2020-02-20-extracting-firmware-from-devices-using-jtag/

- https://www.makemehack.com/2020/03/how-to-find-the-jtag-interface.html

- http://www.jtagtest.com/pinouts/

- https://www.xjtag.com/about-jtag/jtag-a-technical-overview/

— https://www.youtube.com/watch?v=GgMOBhmEJXA (JTAGulator: Introduction and Demonstration —
Joe Grand)

- http://dangerousprototypes.com/docs/Bus_Pirate

- https://openocd.org/doc/pdf/openocd.pdf

- https://www.blackhat.com/docs/us-14/materials/us-14-Oh-Reverse-Engineering-Flash-Memory-For-
Fun-And-Benefit-WP.pdf

- https://conference.hitb.org/hitbsecconf2019ams/materials/D173%20-
%20How%20t0%20Dump,%20Parse, %20and%20Analyze%20i.MX%20Flash%20Memory%20Chips%20-
%20Damien%20Cauquil.pdf

- https://www.macronix.com/Lists/ApplicationNote/Attachments/1937/AN0296V3-
How%20t0%20handle%20the%20spare-byte%20area%200f%20Macronix%20NAND%20Flash-1209.pdf

- https://book.hacktricks.xyz/hardware-physical-access/firmware-analysis

— https://scriptingxss.gitbook.io/firmware-security-testing-methodology/

- https://blog.quarkslab.com/binbloom-blooms-introducing-v2.html

- https://www.pentestpartners.com/security-blog/how-to-do-firmware-analysis-tools-tips-and-tricks/

— Hardware Hacking Tutorial video series by @MakeMeHack -
https://www.youtube.com/@MakeMeHack

- https://github.com/koutto/hardware-hacking/blob/master/Hardware-Hacking-Experiments-Jeremy-
Brun-Nouvion-2020.pdf

- https://www.hexacon.fr/slides/hexacon draytek 2022 final.pdf

- https://elinux.org/images/b/b1/Filesystems-for-embedded-linux.pdf

- https://media.defcon.org/DEF%20CON%2027/DEF%20CON%2027%20presentations/DEFCON-27-
Philippe-Laulheret-Introduction-to-Hardware-Hacking-Extended-Version.pdf

- https://github.com/CyberSecurityUP/Awesome-Hardware-and-loT-Hacking

Hardware Hacking — Methodology & Tips 103 /103

https://www.synacktiv.com/publications/i-hack-u-boot
https://cybergibbons.com/hardware-hacking/recovering-firmware-through-u-boot/
https://docs.u-boot.org/en/latest/usage/cmd/md.html
https://blog.nviso.eu/2020/02/21/iot-hacking-field-notes-1-intro-to-glitching-attacks/
https://optivstorage.blob.core.windows.net/web/file/55e86eae3f04450d9bafcbb3a94559ca/JTAG.Whitepaper.pdf
https://optivstorage.blob.core.windows.net/web/file/55e86eae3f04450d9bafcbb3a94559ca/JTAG.Whitepaper.pdf
https://sergioprado.blog/2020-02-20-extracting-firmware-from-devices-using-jtag/
https://www.makemehack.com/2020/03/how-to-find-the-jtag-interface.html
http://www.jtagtest.com/pinouts/
https://www.xjtag.com/about-jtag/jtag-a-technical-overview/
https://www.youtube.com/watch?v=GgMOBhmEJXA
http://dangerousprototypes.com/docs/Bus_Pirate
https://openocd.org/doc/pdf/openocd.pdf
https://www.blackhat.com/docs/us-14/materials/us-14-Oh-Reverse-Engineering-Flash-Memory-For-Fun-And-Benefit-WP.pdf
https://www.blackhat.com/docs/us-14/materials/us-14-Oh-Reverse-Engineering-Flash-Memory-For-Fun-And-Benefit-WP.pdf
https://conference.hitb.org/hitbsecconf2019ams/materials/D1T3%20-%20How%20to%20Dump,%20Parse,%20and%20Analyze%20i.MX%20Flash%20Memory%20Chips%20-%20Damien%20Cauquil.pdf
https://conference.hitb.org/hitbsecconf2019ams/materials/D1T3%20-%20How%20to%20Dump,%20Parse,%20and%20Analyze%20i.MX%20Flash%20Memory%20Chips%20-%20Damien%20Cauquil.pdf
https://conference.hitb.org/hitbsecconf2019ams/materials/D1T3%20-%20How%20to%20Dump,%20Parse,%20and%20Analyze%20i.MX%20Flash%20Memory%20Chips%20-%20Damien%20Cauquil.pdf
https://www.macronix.com/Lists/ApplicationNote/Attachments/1937/AN0296V3-How%20to%20handle%20the%20spare-byte%20area%20of%20Macronix%20NAND%20Flash-1209.pdf
https://www.macronix.com/Lists/ApplicationNote/Attachments/1937/AN0296V3-How%20to%20handle%20the%20spare-byte%20area%20of%20Macronix%20NAND%20Flash-1209.pdf
https://book.hacktricks.xyz/hardware-physical-access/firmware-analysis
https://scriptingxss.gitbook.io/firmware-security-testing-methodology/
https://blog.quarkslab.com/binbloom-blooms-introducing-v2.html
https://www.pentestpartners.com/security-blog/how-to-do-firmware-analysis-tools-tips-and-tricks/
https://www.youtube.com/@MakeMeHack
https://github.com/koutto/hardware-hacking/blob/master/Hardware-Hacking-Experiments-Jeremy-Brun-Nouvion-2020.pdf
https://github.com/koutto/hardware-hacking/blob/master/Hardware-Hacking-Experiments-Jeremy-Brun-Nouvion-2020.pdf
https://www.hexacon.fr/slides/hexacon_draytek_2022_final.pdf
https://elinux.org/images/b/b1/Filesystems-for-embedded-linux.pdf
https://media.defcon.org/DEF%20CON%2027/DEF%20CON%2027%20presentations/DEFCON-27-Philippe-Laulheret-Introduction-to-Hardware-Hacking-Extended-Version.pdf
https://media.defcon.org/DEF%20CON%2027/DEF%20CON%2027%20presentations/DEFCON-27-Philippe-Laulheret-Introduction-to-Hardware-Hacking-Extended-Version.pdf
https://github.com/CyberSecurityUP/Awesome-Hardware-and-IoT-Hacking

	Document History
	1. Tools
	1.1. Hardware Tools
	1.2. Software Tools

	2. Electronics 101
	2.1. Recognize Main Electronic Components
	2.2. Connectors and Cables
	2.3. Memory Types
	2.3.1. Volatile Memory
	2.3.2. Non-Volatile Memory

	2.4. Chip Package Types
	2.5. Communication Modes

	3. Information Gathering
	3.1. Reconnaissance
	3.2. Chips Identification
	3.3. Debug Interfaces Candidates
	3.4. Annotated Overview of PCB
	3.5. Attack Surface Mapping
	3.6. Ways to Get Access to Firmware

	4. UART
	4.1. UART Protocol
	4.2. UART Pinout Identification
	4.3. Baud Rate identification
	4.3.1. Baud Rate Identification using Logic Analyzer
	4.3.2. Baud Rate Identification using Bruteforce
	4.3.3. Baud Rate Identification using PicoScope

	4.4. Interaction with UART
	4.4.1. Using UART-to-USB serial adapter FT232
	4.4.2. Using Bus Pirate

	4.5. U-Boot Bootloader Exploitation
	4.5.1. Boot Logs Analysis
	4.5.2. Access the Bootloader
	4.5.2.1. Standard Method
	4.5.2.2. Flash Memory Glitching

	4.5.3. U-Boot Abuse to Dump the Firmware
	4.5.3.1. Via command md (Memory Display)
	4.5.3.2. Using SD Card (command mmc)
	4.5.3.3. Using USB (command usb)
	4.5.3.4. Using TFTP (command tftp)

	4.5.4. U-Boot Abuse to Get a Shell

	4.6. Post-Boot Exploitation
	4.6.1. Unauthenticated Root Shell
	4.6.2. Authentication Required
	4.6.3. Restricted Shell (CLI)

	5. JTAG
	5.1. JTAG Protocol
	5.2. JTAG Pinout Identification
	5.2.1. Standard JTAG Pinout
	5.2.2. Using JTAGulator
	5.2.3. Alternative Method using JTAGenum
	5.2.4. Advanced Research using Visual Inspection of Lines on PCB

	5.3. Interaction with JTAG
	5.4. Firmware Extraction using JTAG

	6. SPI Memory
	6.1. SPI Protocol
	6.2. SPI Memory Identification
	6.2.1. Using Datasheet
	6.2.2. Using Logic Analyzer

	6.3. Interaction with SPI
	6.3.1. Connection to Bus Pirate
	6.3.2. Connection Methods
	6.3.2.1. Using Chip Clips
	6.3.2.2. Using Test Hook Clips
	6.3.2.3. Soldering Wires in Place
	6.3.2.4. Chip Removal

	6.4. Firmware Extraction via SPI

	7. Parallel EEPROM/Flash
	7.1. Parallel EEPROM/Flash Identification
	7.2. Dump using Commercial Memory Reader
	7.3. Dealing with Error Correction Code (ECC)

	8. Firmware Analysis and Reverse Engineering
	8.1. Filesystem Extraction
	8.1.1. Automatic Filesystem Extraction Using Binwalk
	8.1.2. Manual Filesystem Extraction
	8.1.3. When no Filesystem is Found

	8.2. Filesystem Analysis
	8.3. Firmware Emulation
	8.3.1. Binary Emulation
	8.3.2. Full System Emulation

	8.4. Loading Bare-Metal Firmwares in IDA
	8.5. Simple Binary Reverse Engineering Examples
	8.5.1. Discovery of a Backdoor Command
	8.5.2. Discovery of a Command Injection Vulnerability (Restricted Shell Bypass)

	References

